The Use of Transient Liquid Phases in Powder Metallurgy

Article Preview

Abstract:

Liquid phase sintering is most widely known in its variant „persistent liquid phase sintering“, in which case the liquid phase is present in constant quantity during the entire isothermal period. There is however also the variant „transient liquid phase“, the melt being present only for a short period in the first stage of sintering and then solidifying through diffusional processes. In this presentation, the preconditions for both variants are presented, in particular with regard to the starting materials. The benefits of transient liquid phases are described, both for sintering – to accelerate material transport, contact formation and microstructural homogenization compared to standard solid state sintering – and for transient liquid phase bonding, a brazing variant which is an attractive method for joining porous powder compacts. Both techniques are highly useful in particular for ferrous powder metallurgy precision components, etc.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volume 1016)

Pages:

69-76

Citation:

Online since:

January 2021

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2021 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] W. Schatt, K.-P. Wieters, B. Kieback, Pulvermetallurgie, 2nd Ed., Springer, Berlin-Heidelberg-New York, (2007).

Google Scholar

[2] R.M. German, Powder Metallurgy & Particulate Materials Processing, MPIF, Princeton NJ, (2005).

Google Scholar

[3] H. Danninger, R. de Oro Calderon, C. Gierl-Mayer, Powder Metallurgy and Sintered Materials, in Ullmanns Encyclopaedia of Industrial Chemistry,, Wiley-VCH, Weinheim, 2017, https://doi.org/10.1002/14356007.a22_105.pub2.

DOI: 10.1002/14356007.a22_105.pub2

Google Scholar

[4] A. Šalak, Ferrous Powder Metallurgy. Cambridge Int. Sci. Publ., Cambridge UK, (1995).

Google Scholar

[5] P. Beiss, Pulvermetallurgische Fertigungstechnik, Springer-Vieweg, Berlin-Heidelberg, (2013).

Google Scholar

[6] W. Schatt, Sintervorgänge, VDI-Verlag, Düsseldorf, (1992).

Google Scholar

[7] S.-J.L. Kang, Sintering, Elsevier Butterworth Heinemann, Oxford, (2005).

Google Scholar

[8] R.M. German, Liquid Phase Sintering, Plenum, New York, (1985).

Google Scholar

[9] R.M. German, A quantitative theory for supersolidus liquid phase sintering. Powder Metallurgy 34 (1991) 101-107.

DOI: 10.1179/pom.1991.34.2.101

Google Scholar

[10] A. Mohammadzadeh et al., New concept in analysis of supersolidus liquid phase sintering of alpha brass, Powder Metallurgy 58 (2015) 123-132.

DOI: 10.1179/1743290114y.0000000114

Google Scholar

[11] J. Liu, R.M. German, Densification and shape distortion in liquid-phase sintering, Met. Mat. Trans. 30A (1999) 3211-3217.

DOI: 10.1007/s11661-999-0231-5

Google Scholar

[12] W.J. Huppmann, G. Petzow, Flüssigphasensintern – Verdichtung und Gefügeausbildung, Z. Metallkunde 67 (1976) 579-590.

DOI: 10.1515/ijmr-1976-670901

Google Scholar

[13] H. Danninger, Homogenization and pore formation during sintering with transient liquid phase, Powder Metall. Int. 20 (1988) No.1, 21-25.

Google Scholar

[14] R. de Oro Calderon et al., Liquid Phases Tailored for Introducing Oxidation-Sensitive Elements through the Master Alloy Route, Journal of the Japan Society of Powder and Powder Metallurgy 63 (2016) 172 - 184.

DOI: 10.2497/jjspm.63.172

Google Scholar

[15] F.V. Lenel, Powder Metallurgy - Principles and Applications, MPIF, Princeton NJ, (1980).

Google Scholar

[16] N. Dautzenberg, H.J. Dorweiler, Dimensional behaviour of copper-carbon sintered steels, Powder Metall. Int. 17 (1985) 279-282.

Google Scholar

[17] B. Kieback, W. Schatt, Anwendungen eines kurzzeitigen Flüssigphasensinterns für die Herstellung von Fe-Ti-Sinterlegierungen, Planseeber. Pulvermet. 28 (1980) 204-215.

Google Scholar

[18] D. Spoljaric et al., Influence of singular defects on the fatigue properties of low alloyed PM steels, Proc. Proc. PM94 Paris, SF2M ed, Les Ulis (1994) Vol.2, pp.827-830.

Google Scholar

[19] R. de Oro Calderon et al., Study of high temperature wetting and infiltration for optimizing liquid phase sintering in low alloy steels, Powder Metallurgy 55 (2012, 180–190.

DOI: 10.1179/1743290111y.0000000007

Google Scholar

[20] D. Berner, H.E. Exner, G. Petzow, Swelling of iron-copper mixtures during sintering and infiltration, Modern Dev. in Powder Metall. 6 (1974) 237-250.

Google Scholar

[21] H.Danninger et al., Comparison of Mn, Cr and Mo alloyed sintered steels prepared from elemental powders, Powder Metall. 48 No.1 (2005) 23-32.

DOI: 10.1179/003258905x37567

Google Scholar

[22] H.Danninger et al., Reaction of nitrogen atmospheres with PM steel compacts during sintering, Adv. Powder Metall. & Partic. Mater. – 2008, Part 5, MPIF, Princeton NJ, 2008, pp.63-71.

Google Scholar

[23] H. Danninger, Sintering of Mo alloyed P/M steels prepared from elemental powders, I: Sintering temperature and mechanical properties, Powder Metall. Int. 24 (1992) No.2, 73-79.

DOI: 10.1016/0026-0657(92)92428-t

Google Scholar

[24] Höganäs Handbook for Sintered Components Vol.6: Metallography,, Höganäs AB, Höganäs, Sweden, (1999).

Google Scholar

[25] G. Zapf, K. Dalal, Introduction of high oxygen affinity elements manganese, chromium and vanadium in the powder metallurgy of P/M parts, Modern Dev. in Powder Metall. 10, 1977, 129-152.

Google Scholar

[26] P. Engdahl et al., Fatigue behavior of PM steels – material aspects, Proc. PM'90 World Congress, London, Inst. of Metals, London, 1990, Vol.2, pp.144-154.

Google Scholar

[27] W.D. Kay, Diffusion Brazing, in: ASM Handbook Vol.6 Welding, Brazing and Soldering,, ASM, Materials Park OH, 1993, 343-344.

DOI: 10.31399/asm.hb.v06.a0001390

Google Scholar

[28] C.E. Campbell, W.J. Boettinger, Transient liquid-phase bonding in the Ni-Al-B system, Met. Mat. Trans. 31A (2000) 2835-2847.

DOI: 10.1007/bf02830355

Google Scholar

[29] W.V. Knopp, P/M advances with brazing technologies, Adv. Powder Metall. & Partic. Mater. – 1996, MPIF, Princeton NJ, 1996, Part 11, pp.167-170.

Google Scholar

[30] H. Danninger et al., Reactive sinter brazing of ferrous PM parts using iron-carbon fillers, Powder Metall. Progress 10 (2010) 121-132.

Google Scholar