[1]
W. Schatt, K.-P. Wieters, B. Kieback, Pulvermetallurgie, 2nd Ed., Springer, Berlin-Heidelberg-New York, (2007).
Google Scholar
[2]
R.M. German, Powder Metallurgy & Particulate Materials Processing, MPIF, Princeton NJ, (2005).
Google Scholar
[3]
H. Danninger, R. de Oro Calderon, C. Gierl-Mayer, Powder Metallurgy and Sintered Materials, in Ullmanns Encyclopaedia of Industrial Chemistry,, Wiley-VCH, Weinheim, 2017, https://doi.org/10.1002/14356007.a22_105.pub2.
DOI: 10.1002/14356007.a22_105.pub2
Google Scholar
[4]
A. Šalak, Ferrous Powder Metallurgy. Cambridge Int. Sci. Publ., Cambridge UK, (1995).
Google Scholar
[5]
P. Beiss, Pulvermetallurgische Fertigungstechnik, Springer-Vieweg, Berlin-Heidelberg, (2013).
Google Scholar
[6]
W. Schatt, Sintervorgänge, VDI-Verlag, Düsseldorf, (1992).
Google Scholar
[7]
S.-J.L. Kang, Sintering, Elsevier Butterworth Heinemann, Oxford, (2005).
Google Scholar
[8]
R.M. German, Liquid Phase Sintering, Plenum, New York, (1985).
Google Scholar
[9]
R.M. German, A quantitative theory for supersolidus liquid phase sintering. Powder Metallurgy 34 (1991) 101-107.
DOI: 10.1179/pom.1991.34.2.101
Google Scholar
[10]
A. Mohammadzadeh et al., New concept in analysis of supersolidus liquid phase sintering of alpha brass, Powder Metallurgy 58 (2015) 123-132.
DOI: 10.1179/1743290114y.0000000114
Google Scholar
[11]
J. Liu, R.M. German, Densification and shape distortion in liquid-phase sintering, Met. Mat. Trans. 30A (1999) 3211-3217.
DOI: 10.1007/s11661-999-0231-5
Google Scholar
[12]
W.J. Huppmann, G. Petzow, Flüssigphasensintern – Verdichtung und Gefügeausbildung, Z. Metallkunde 67 (1976) 579-590.
DOI: 10.1515/ijmr-1976-670901
Google Scholar
[13]
H. Danninger, Homogenization and pore formation during sintering with transient liquid phase, Powder Metall. Int. 20 (1988) No.1, 21-25.
Google Scholar
[14]
R. de Oro Calderon et al., Liquid Phases Tailored for Introducing Oxidation-Sensitive Elements through the Master Alloy Route, Journal of the Japan Society of Powder and Powder Metallurgy 63 (2016) 172 - 184.
DOI: 10.2497/jjspm.63.172
Google Scholar
[15]
F.V. Lenel, Powder Metallurgy - Principles and Applications, MPIF, Princeton NJ, (1980).
Google Scholar
[16]
N. Dautzenberg, H.J. Dorweiler, Dimensional behaviour of copper-carbon sintered steels, Powder Metall. Int. 17 (1985) 279-282.
Google Scholar
[17]
B. Kieback, W. Schatt, Anwendungen eines kurzzeitigen Flüssigphasensinterns für die Herstellung von Fe-Ti-Sinterlegierungen, Planseeber. Pulvermet. 28 (1980) 204-215.
Google Scholar
[18]
D. Spoljaric et al., Influence of singular defects on the fatigue properties of low alloyed PM steels, Proc. Proc. PM94 Paris, SF2M ed, Les Ulis (1994) Vol.2, pp.827-830.
Google Scholar
[19]
R. de Oro Calderon et al., Study of high temperature wetting and infiltration for optimizing liquid phase sintering in low alloy steels, Powder Metallurgy 55 (2012, 180–190.
DOI: 10.1179/1743290111y.0000000007
Google Scholar
[20]
D. Berner, H.E. Exner, G. Petzow, Swelling of iron-copper mixtures during sintering and infiltration, Modern Dev. in Powder Metall. 6 (1974) 237-250.
Google Scholar
[21]
H.Danninger et al., Comparison of Mn, Cr and Mo alloyed sintered steels prepared from elemental powders, Powder Metall. 48 No.1 (2005) 23-32.
DOI: 10.1179/003258905x37567
Google Scholar
[22]
H.Danninger et al., Reaction of nitrogen atmospheres with PM steel compacts during sintering, Adv. Powder Metall. & Partic. Mater. – 2008, Part 5, MPIF, Princeton NJ, 2008, pp.63-71.
Google Scholar
[23]
H. Danninger, Sintering of Mo alloyed P/M steels prepared from elemental powders, I: Sintering temperature and mechanical properties, Powder Metall. Int. 24 (1992) No.2, 73-79.
DOI: 10.1016/0026-0657(92)92428-t
Google Scholar
[24]
Höganäs Handbook for Sintered Components Vol.6: Metallography,, Höganäs AB, Höganäs, Sweden, (1999).
Google Scholar
[25]
G. Zapf, K. Dalal, Introduction of high oxygen affinity elements manganese, chromium and vanadium in the powder metallurgy of P/M parts, Modern Dev. in Powder Metall. 10, 1977, 129-152.
Google Scholar
[26]
P. Engdahl et al., Fatigue behavior of PM steels – material aspects, Proc. PM'90 World Congress, London, Inst. of Metals, London, 1990, Vol.2, pp.144-154.
Google Scholar
[27]
W.D. Kay, Diffusion Brazing, in: ASM Handbook Vol.6 Welding, Brazing and Soldering,, ASM, Materials Park OH, 1993, 343-344.
DOI: 10.31399/asm.hb.v06.a0001390
Google Scholar
[28]
C.E. Campbell, W.J. Boettinger, Transient liquid-phase bonding in the Ni-Al-B system, Met. Mat. Trans. 31A (2000) 2835-2847.
DOI: 10.1007/bf02830355
Google Scholar
[29]
W.V. Knopp, P/M advances with brazing technologies, Adv. Powder Metall. & Partic. Mater. – 1996, MPIF, Princeton NJ, 1996, Part 11, pp.167-170.
Google Scholar
[30]
H. Danninger et al., Reactive sinter brazing of ferrous PM parts using iron-carbon fillers, Powder Metall. Progress 10 (2010) 121-132.
Google Scholar