[1]
P. Gong, E.J. Palmiere, W.M. Rainforth, Thermomechanical processing route to achieve ultrafine grains in low carbon micro-alloyed steels. Acta Mater, 2016, 119, 43–54.
DOI: 10.1016/j.actamat.2016.08.010
Google Scholar
[2]
W. Ding, Y. Liu, J. Xie, L. Sun, T. Liu, Influence of stress on kinetics and transformation plasticity of ferrite transformation based on hysteresis effects. Metals 2019, 9(1), 73.
DOI: 10.3390/met9010073
Google Scholar
[3]
W. Ding, Y. Liu, J. Xie, L. Sun, T. Liu, F. Yuan, J. Pan, Effect of carbide precipitation on the evolution of residual stress during tempering. Metals 2019, 9(6), 709.
DOI: 10.3390/met9060709
Google Scholar
[4]
M. Villa, F. Niessen, M. A. J. Somers, In situ investigation of the evolution of lattice strain and stresses in austenite and martensite during quenching and tempering of Steel. Metallurgical and Materials Transactions A 2018, 49(1), 28-40.
DOI: 10.1007/s11661-017-4387-0
Google Scholar
[5]
M. S. Younger, K. H. Eckelmeyer, Overcoming residual stresses and machining distortion in the production of aluminum alloy satellite boxes. Sandia Report SAND2007-6811. Sandia National Laboratories, (2007).
DOI: 10.2172/922073
Google Scholar
[6]
J. Chen, L. Zhen, J. T. Jiang, L. Yang, W. Shao, B. Zhang, Microstructures and mechanical properties of age-formed 7050 aluminum alloy. Materials Science and Engineering: A 2012, 539, 115-123.
DOI: 10.1016/j.msea.2012.01.067
Google Scholar
[7]
J. Chen, J. Jiang, L. Zhen, W. Shao, Stress relaxation behavior of an Al–Zn–Mg–Cu alloy in simulated age-forming process. Journal of Materials Processing Technology 2014, 214(4), 775-783.
DOI: 10.1016/j.jmatprotec.2013.08.017
Google Scholar
[8]
J. Zheng, R. Pan, C. Li, W. Zhang, J. Lin, C. Davies, Experimental investigation of multi-step stress-relaxation-ageing of 7050 aluminium alloy for different pre-strained conditions. Materials Science and Engineering: A 2018, 710, 111-120.
DOI: 10.1016/j.msea.2017.10.066
Google Scholar
[9]
J. Zheng, J. Lin, J. Lee, R. Pan, C. Li, C. Davies, A novel constitutive model for multi-step stress relaxation ageing of a pre-strained 7xxx series alloy. International Journal of Plasticity 2018, 106, 31-47.
DOI: 10.1016/j.ijplas.2018.02.008
Google Scholar
[10]
A. Deschamps, F. Livet, Y. Bréchet, Influence of predeformation on ageing in an Al–Zn–Mg alloy—I. Microstructure evolution and mechanical properties. Acta Materialia 1998, 47(1), 281-292.
DOI: 10.1016/s1359-6454(98)00293-6
Google Scholar
[11]
G. Waterloo, V. Hansen, J. Gjønnes, S.R. Skjervold, Effect of predeformation and preaging at room temperature in Al–Zn–Mg–(Cu,Zr) alloys. Materials Science & Engineering A 2001, 303(1), 226-233.
DOI: 10.1016/s0921-5093(00)01883-9
Google Scholar
[12]
N. Han, X. Zhang, S. Liu, B. Ke, X. Xin, Effects of pre-stretching and ageing on the strength and fracture toughness of aluminum alloy 7050. Materials Science and Engineering: A 2011, 528(10-11), 3714-3721.
DOI: 10.1016/j.msea.2011.01.068
Google Scholar
[13]
W. Ding, Y. Liu, J. Xie J, L. Sun, T. Liu, F. Yuan, J. Pan, Effect of prestrain and tempering on the residual stress of low‐carbon microalloyed steel[J]. Steel Research International, 2019, 1900421.
DOI: 10.1002/srin.201900421
Google Scholar
[14]
G. Williamson, W. Hall, X-ray line broadening from filed aluminium and wolfram. Acta Metall. 1953, 1, 22-31.
DOI: 10.1016/0001-6160(53)90006-6
Google Scholar
[15]
J. Aufrecht, A. Leineweber, E. Mittemeijer, J. Foct, The structure of nitrogen-supersaturated ferrite produced by ball milling. Philosophical Magazine 2008, 88(12), 1835-1855.
DOI: 10.1080/14786430802322198
Google Scholar