Friction Stir Welded AISI 304 Metal Sheets for Application in Food Implants

Article Preview

Abstract:

Stainless steels are indispensable materials in many industrial fields. They can be easily shaped and joined by traditional welding methods. Some problematics such as possible decrease in corrosion resistance at the welding bead and in the heat-effected zone, residual stress, crack formation and distortions may take place after welding. Friction Stir Welding (FSW) may be used for joining stainless steels in a single pass and for optimising microstructure and mechanical properties of the processed region. The application of FSW to the widely used AISI304 stainless steel is investigated in food implants. The mechanical properties together with corrosion resistance and surface finishing are characterized. A high energy input is chosen for the welding (2000 rpm tool rotational speed and 50 mm/min advancing speed). The stirred zone (SZ) is characterized by optical microscopy. Vickers microhardness in the SZ results 37% higher than in the base material. Tensile tests highlight elongations up to 40% keeping maximum stress values at 600 MPa. All samples pass accelerated corrosion tests that simulate 20 years of cleaning cycles in a typical food implant.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volume 1016)

Pages:

63-68

Citation:

Online since:

January 2021

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2021 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] R.S. Mishra, Z.Y. Ma, Friction Stir Welding and Processing, Mater. Sci. Eng. R. 50 (2005) 1–78.

Google Scholar

[2] Z.Y. Ma, Friction Stir Processing Technology: A Review, Metall. Mater. Trans. A, 39A (2008) 642–658.

Google Scholar

[3] G. Cam, S. Mistikoglu, Recent Developments in Friction Stir Welding of Al-alloys, JMEPEG. 23 (2014) 1936–(1953).

DOI: 10.1007/s11665-014-0968-x

Google Scholar

[4] G. Cam, Friction stir welded structural materials: beyond Al-alloys, International Materials Reviews, 56,1,48. (2001).

DOI: 10.1179/095066010x12777205875750

Google Scholar

[5] C. Meran, V. Kovan, A. Alptekin, Friction stir welding of AISI 304 austenitic stainless steel, Mat.-wiss. u. Werkstofftech, 38 (2007) 829 – 835.

DOI: 10.1002/mawe.200700214

Google Scholar

[6] Information on http://www.msm.cam.ac.uk/phase-trans/2003/FSW/aaa.html.

Google Scholar

[7] T. Ishikawa, H. Fujii, K. Genchi, S. Iwaki, S. Matsuoka, K. NogiI, High Speed–High Quality Friction Stir Welding of Austenitic Stainless Steel, ISIJ International, 49 (2009) 897–901.

DOI: 10.2355/isijinternational.49.897

Google Scholar

[8] S., Packer, R., Steel, M., Matsunaga, Friction Stir Welding of High Melting Temperature Materials, Megastir, (2005).

Google Scholar

[9] L. Ke, L. Xing, J.E. Indacochea, Material flow pattern and cavity model in friction stir welding of aluminium alloys. Metall Mater Trans B, 358 (2004) 153–157.

DOI: 10.1007/s11663-004-0105-6

Google Scholar

[10] O. Frigaard, O. Grong, O.T. Midling, A process model for friction stir welding of age. Hardening aluminium alloys. Met. Mat. Trans.A 32 (2001)1189.

DOI: 10.1007/s11661-001-0128-4

Google Scholar

[11] M.A. Safarkhanian, M. Goodarzi, S.M.A. Boutorabi, Effect of abnormal grain growth on tensile strength of Al–Cu–Mg alloy friction stir welded joints, J. Mat. Sci. 44 (2009) 5452–5458.

DOI: 10.1007/s10853-009-3735-x

Google Scholar

[12] A.P. Reynolds, Wei Tang, T. Gnaupel-Herold, H. Prask, Scripta Materialia 48 (2003) 1289–1294.

DOI: 10.1016/s1359-6462(03)00024-1

Google Scholar

[13] S.H.C. Park, Y.S. Sato, H. Kokawa, K. Okamoto, S. Hirano, M. Inagaki, Rapid formation on the sigma phase in 304 stainless steel during friction stir welding, Scripta Materialia 49 (2003) 1175-1180.

DOI: 10.1016/j.scriptamat.2003.08.022

Google Scholar

[14] S.H.C. Park, Y. S. Sato, H. Kokawa, K. Okamoto, S. Hirano, M. Inagaki, Microstructure and properties of friction stir welded 304 austenitic stainless steel, Science and Technology of Welding and Joining 10:5 (2005) 550-556.

DOI: 10.1179/174329305x46691

Google Scholar

[15] Chen YC, Fujii H, Tsumura T, Kitagawa Y, Nakata K, Ikeuchi K, et al., Banded structure and its distribution in friction stir processing of 3161 austenitic stainless steel, J. Nucl. Mater. 420 (2012) 497–500.

DOI: 10.1016/j.jnucmat.2011.10.053

Google Scholar

[16] M Hajian, A. Abdollah-Zaded, S.S. Rezaei-Nejad, H. Assadi, S.M.M. Hadavi, K. Chung, Microstructure and mechanical properties of friction stir processed AISI 316L stainless steel, Materials and Design 67 (2015) 82-94.

DOI: 10.1016/j.matdes.2014.10.082

Google Scholar

[17] J.C. Lippold, D.J. Kotecki, Welding metallurgy and weldability of stainless steels, J.Wiley&S, (2005).

Google Scholar