[1]
R.S. Mishra, Z.Y. Ma, Friction Stir Welding and Processing, Mater. Sci. Eng. R. 50 (2005) 1–78.
Google Scholar
[2]
Z.Y. Ma, Friction Stir Processing Technology: A Review, Metall. Mater. Trans. A, 39A (2008) 642–658.
Google Scholar
[3]
G. Cam, S. Mistikoglu, Recent Developments in Friction Stir Welding of Al-alloys, JMEPEG. 23 (2014) 1936–(1953).
DOI: 10.1007/s11665-014-0968-x
Google Scholar
[4]
G. Cam, Friction stir welded structural materials: beyond Al-alloys, International Materials Reviews, 56,1,48. (2001).
DOI: 10.1179/095066010x12777205875750
Google Scholar
[5]
C. Meran, V. Kovan, A. Alptekin, Friction stir welding of AISI 304 austenitic stainless steel, Mat.-wiss. u. Werkstofftech, 38 (2007) 829 – 835.
DOI: 10.1002/mawe.200700214
Google Scholar
[6]
Information on http://www.msm.cam.ac.uk/phase-trans/2003/FSW/aaa.html.
Google Scholar
[7]
T. Ishikawa, H. Fujii, K. Genchi, S. Iwaki, S. Matsuoka, K. NogiI, High Speed–High Quality Friction Stir Welding of Austenitic Stainless Steel, ISIJ International, 49 (2009) 897–901.
DOI: 10.2355/isijinternational.49.897
Google Scholar
[8]
S., Packer, R., Steel, M., Matsunaga, Friction Stir Welding of High Melting Temperature Materials, Megastir, (2005).
Google Scholar
[9]
L. Ke, L. Xing, J.E. Indacochea, Material flow pattern and cavity model in friction stir welding of aluminium alloys. Metall Mater Trans B, 358 (2004) 153–157.
DOI: 10.1007/s11663-004-0105-6
Google Scholar
[10]
O. Frigaard, O. Grong, O.T. Midling, A process model for friction stir welding of age. Hardening aluminium alloys. Met. Mat. Trans.A 32 (2001)1189.
DOI: 10.1007/s11661-001-0128-4
Google Scholar
[11]
M.A. Safarkhanian, M. Goodarzi, S.M.A. Boutorabi, Effect of abnormal grain growth on tensile strength of Al–Cu–Mg alloy friction stir welded joints, J. Mat. Sci. 44 (2009) 5452–5458.
DOI: 10.1007/s10853-009-3735-x
Google Scholar
[12]
A.P. Reynolds, Wei Tang, T. Gnaupel-Herold, H. Prask, Scripta Materialia 48 (2003) 1289–1294.
DOI: 10.1016/s1359-6462(03)00024-1
Google Scholar
[13]
S.H.C. Park, Y.S. Sato, H. Kokawa, K. Okamoto, S. Hirano, M. Inagaki, Rapid formation on the sigma phase in 304 stainless steel during friction stir welding, Scripta Materialia 49 (2003) 1175-1180.
DOI: 10.1016/j.scriptamat.2003.08.022
Google Scholar
[14]
S.H.C. Park, Y. S. Sato, H. Kokawa, K. Okamoto, S. Hirano, M. Inagaki, Microstructure and properties of friction stir welded 304 austenitic stainless steel, Science and Technology of Welding and Joining 10:5 (2005) 550-556.
DOI: 10.1179/174329305x46691
Google Scholar
[15]
Chen YC, Fujii H, Tsumura T, Kitagawa Y, Nakata K, Ikeuchi K, et al., Banded structure and its distribution in friction stir processing of 3161 austenitic stainless steel, J. Nucl. Mater. 420 (2012) 497–500.
DOI: 10.1016/j.jnucmat.2011.10.053
Google Scholar
[16]
M Hajian, A. Abdollah-Zaded, S.S. Rezaei-Nejad, H. Assadi, S.M.M. Hadavi, K. Chung, Microstructure and mechanical properties of friction stir processed AISI 316L stainless steel, Materials and Design 67 (2015) 82-94.
DOI: 10.1016/j.matdes.2014.10.082
Google Scholar
[17]
J.C. Lippold, D.J. Kotecki, Welding metallurgy and weldability of stainless steels, J.Wiley&S, (2005).
Google Scholar