Thermal Barrier Coatings for Molybdenum Produced Using Nanopowders

Article Preview

Abstract:

The molybdenum is one of the most important refractory metals used in aerospace industry. The main disadvantage of Mo is low oxidation resistance at elevated temperature and the using of protective coatings is necessary. In present article the new types of protective coatings produced by slurry method were developed. The slurries contained Al nanopowder and Si powder as well as non-organic binder (H2CrO4 and water). After immersion and drying the samples with slurries were heat treated at 1000°C in Ar atmosphere. The thickness of obtained coatings was in range 10-20 μm. The presences of phases form Mo-Al as well Mo-Si systems was analyzed using scanning electron microscopy. The developed coatings were used as a bond coat for ceramic layer produced by plasma spray physical vapour deposition method (PS-PVD). In this process the columnar ceramic layer contains yttria stabilized zirconia (YSZ) was obtained wit thickness above 100 μm. The obtained results showed that it is possible to obtain TBC coating on molybdenum contained Al-Si bond coat and outer YSZ ceramic layer. The proposed coating can be used in aerospace applications.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volume 1016)

Pages:

487-492

Citation:

Online since:

January 2021

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2021 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] S.M. Tuominen, J.M. Dahl, Cyclic oxidation of molybdenum proceted by silicide coatings, Jour. of the Less Common Metals, 81 (1981) 2, 249-260, https://doi.org/10.1016/0022-5088(81)90031-X.

DOI: 10.1016/0022-5088(81)90031-x

Google Scholar

[2] S.Prasad, A.Paul, Growth mechanism of phases by interdiffusion and atomic mechanism of diffusion in molybdenum-silicon system, Intermet., 19 (2011), 1191-1200.

DOI: 10.1016/j.intermet.2011.03.027

Google Scholar

[3] J.Sun, Q-G Fu, L-P. Guo, Y. Liu, Y.Huo, H.-J. Li, Efect of filler on the xodation protective ability of MoSi2 coating for Mo substrate by halide activated pack cementation, Mater and Des., 92 (2016), 602-609, https://dx.dog.org/10.1016/j.matdes.2015.12.079.

DOI: 10.1016/j.matdes.2015.12.079

Google Scholar

[4] S.P. Chakraborty, S. Banerjee, L.G. Sharma, Ak.K. Suri, Jour. of Nucl. Mater., 403 (2010), 152-159,.

Google Scholar

[5] S. Majumdar, L.G. Sharma, A.K. Suri., Development of oxidation resistant coatings on Mo-3W alloys, Int. Jour. of Refr. Metals & Hard Mater., 26 (2008), 549-554,.

DOI: 10.1016/j.ijrmhm.2008.01.005

Google Scholar

[6] Ito K., Murakami T., Adachi K., Yamaguchi M., Oxidation behawior of Mo-9Si-18B alloy pack-cemented in a Si-base pack mixture, Interm.., 11 (2003), 763-772,.

DOI: 10.1016/s0966-9795(03)00074-8

Google Scholar

[7] Z. Cai, S.Liu., L. Xiao, Z. Fang. W. Li, B. Zhang, Oxidation behawior and microstructural evolution of a slurry sintered Si-Mo coating on Mo alloy at 1650oC, Surf. and Coat. Techn., 124 (2017), 182-189, https://dx.doi.org/10.1016/j.surfcoat.2017.05.054.

DOI: 10.1016/j.surfcoat.2017.05.054

Google Scholar

[8] J.K. Yoon, J.-K. Lee, J.-Y. Byun, G.-H. Kim, Y.-H. Paik, J.-S. Kim, Effect of amonia nitridation on the microstructure of MoSi2 coatings formed by chemical vapour deposition of Si on Mo substrates, Surf. and Coat. Technol., 160 (2002), 29-37.

DOI: 10.1016/s0257-8972(02)00379-1

Google Scholar

[9] J.K. Yoon, G.-H. Kim, J.-Y. Byun, J.-K. Lee, H.-S. Yoon, K.-T. Hong, Effect of Cl/H input ratio on the growth of MoSi2 coatings formed by chemical vapour deposition of Si on Mo Substrates from SiCl4-H2 precursor gases, Surf. and Coat. Technol., 172 (2003), 176-183,.

DOI: 10.1016/s0257-8972(03)00428-6

Google Scholar

[10] Y. Wang, D. Wang, J. Yan, A. Sun, Preparation and characterization of molybdenum disilicide coating on molybdenum substrate by air plasma spraying, App Surf. Scie., 284 (2013), 861-868, https://dx.doi.org/10.1016/j.apsusc.2013.08.029.

DOI: 10.1016/j.apsusc.2013.08.029

Google Scholar

[11] L. Zhu, Y. Zhu, X. Ren, P. Zhang, J. Qiao, P. Feng, Microstructure, properties and oxidation behaviour of MoSi2-MoB-ZrO2 coating for Mo substrate using spark plasma sintering, Surf. and Coat. Technol., 375 (20190, 773-781, https://dx.doi.org/10.1016/j.surfcoat.2019.08.002.

DOI: 10.1016/j.surfcoat.2019.08.002

Google Scholar

[12] S. Govindarajan, B. Mishra, D.L. Olson, J.J. Moore, J. Disam, Synthesis of molybdenum dislilicide on molybdenum substrates, Surf. and Coat. Technol., 76-77 (1995), 7-13.

DOI: 10.1016/0257-8972(95)02524-3

Google Scholar

[13] M. Góral, J. Sieniawski, S. Kotowski, M. Pytel, M. Masłyk, Influence of turbine blade geometry on thickness of tbcs deposited by VPA and PS-PVD methods, Arch. of Mater. Sci. and Eng., 54(1), 22-28.

Google Scholar

[14] M. Goral, S. Kotowski, J. Sieniawski, The technology of plasma spray physical vapour deposition, High Temp. Mat. and Proc., 32 (2013) 1, 33-39.

DOI: 10.1515/htmp-2012-0051

Google Scholar

[15] A.S. Ulrich, M.C. Galetz, Protective aluminide coatings for refractory metals, Oxid. of Met., 86 (2016), 511-535,.

DOI: 10.1007/s11085-016-9650-z

Google Scholar

[16] R. Sakidja, F.Rioult, J. Werner, J.H. Perepezko, Aluminum pack cementation of Mo-Si-B alloys, Scr. Mat. 55 (2006), 903-906,.

DOI: 10.1016/j.scriptamat.2006.07.044

Google Scholar

[17] A. Kochmanska, P. Kochmanski P., Heat resistant Al-Si layers produced on TZM molybdenum alloy (in Polish), Inz.. Mat., 6 (2014), pp.504-507.

Google Scholar

[18] K. Szymański, M. Góral, T. Kubaszek, P. C. Monteiro, Microstructure of TBC coatings deposited by HVAF and PS-PVD methods, Sol. St. Phen., 227 (2015), pp.373-376,.

DOI: 10.4028/www.scientific.net/ssp.227.373

Google Scholar