Increasing Hardenability and Hardness of Quenching and Tempering Alloys by Substituting Chromium with Manganese

Article Preview

Abstract:

This study investigates the influence of the substitution of chromium (-0.8 wt.−%) by manganese (+1.3 wt.−%) in a standard quench and tempering steel and the predictability of property changes through simple simulations, only dependent on the chemical composition. The substitution of chromium by manganese leads to an increased hardness (+50 HV10) and a reduction of the critical cooling speed from 19 K s−1 for the reference alloys to 9 K s−1 for the new alloy and a nearly constant hardness of (600 HV10) after Jominy-test. The commercial software JMATPRO is used to simulate and predict key properties for the industrial production. It is shown that a successful simulation of phase transformation temperatures and the general directions of change can be predicted, but more complex properties like critical cooling rates or hardenability need more sophisticated methods.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volume 1016)

Pages:

493-498

Citation:

Online since:

January 2021

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2021 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] G. Goch, W. Knapp, F. Härtig: Precision engineering for wind energy systems, CRIP Annals Vol. 61 (2012) p.611.

DOI: 10.1016/j.cirp.2012.05.011

Google Scholar

[2] M. Burtchen, U. Maschelski, B. Lüneburg: Material qualification of main bearings for large wind energy turbines, Presented at: 10 International Symposium on Advances in Steel Technologies (2014).

DOI: 10.1520/stp158020140083

Google Scholar

[3] H.K.D.H Bhadeshia: Steels for Bearings, Progress in Materials Science Vol. 57 (2012) p.268.

Google Scholar

[4] M. Cohen: The Strengthening of Steel, Trans. AIME Vol. 224 (1962) p.638.

Google Scholar

[5] R. Grange, C. Hribal and L. Porter: Hardness of Tempered Martensite in Carbon and Low­Alloy Steels, Metall. Mater. Trans. A Vol. 273­275 8 (1977) p.1775.

DOI: 10.1007/bf02646882

Google Scholar

[6] G. Krauss: Martensite in Steel: Strength and Structure, Mat. Sci. Eng. A Vol. (1991) p.40.

Google Scholar

[7] W. Spintig, J. Rollmann, B. Stakemeier: Verfahren zum Herstellen eines Großwälzlagers German Patent (Patent No. DE102005006701B3)[8] S. Tawara: Effects of various elements on hardening of steel (Report I), Tetsu­to­Hagane Vol. 23 (1937) p.875.

Google Scholar

[9] A. Gramlich, A. Stieben, M. Menzel, F. Pape, B. Lüneburg and W. Bleck: Manganese Alloyed Q & T Steel with high Hardenability for Forging Parts with large Diameters, HTM J. Heat Treatm. Mat. Vol. 74 (2019), p.357.

DOI: 10.3139/105.110397

Google Scholar

[10] A. Gramlich, R. Emmrich and W. Bleck: Austenite Reversion Tempering­Annealing of 4 wt.­% Manganese Steels for Automotive Forging Application, Metals Vol. 9 (2019), p.575.

DOI: 10.3390/met9050575

Google Scholar

[11] N. Saunders, U. K. Z. Guo, X. Li, A. P. Miodownik, J.­Ph. Schillé: Using JMatPro to model materials properties and behavior, JOM Vol. 55 (2003), p.60.

DOI: 10.1007/s11837-003-0013-2

Google Scholar

[12] Information on https://matplus.de/de/jmatpro/; accessed on 07.01.(2020).

Google Scholar

[13] J. v. Appen, R. Dronskowski: Carbon­Induced Ordering in Manganese­Rich Austenite ­ A Density­Functional Total­Energy and Chemical­Bonding Study, Steel Research Int. Vol. 82 (2011), p.101.

Google Scholar

[14] T. A. Timmerscheidt, R. Dronskowski: An Ab Initio Study of Carbon­Induced Ordering in Austenitic Fe­Mn­Al­C Alloys, Steel Research Int. Vol. 88 (2017).

DOI: 10.1002/srin.201600292

Google Scholar