Non-Vacuum Fabrication of Bandgap-Controlled CZTGS Alloy Films Using CZTS+CZGS Mixed Nanoparticle Inks

Article Preview

Abstract:

Semiconductor alloy films of Cu2ZnSn1-xGexS4 (CZTGS) were prepared by deposition and sintering of mixed nanoparticle suspensions composed of Cu2ZnSnS4 (CZTS) and Cu2ZnGeS4 (CZGS) nanoparticles with 1-dodecanethiol surfactant. Colloidal CZTS and CZGS nanoparticles were synthesized via the liquid-phase route and used without post-processing treatment. The CZTGS films are crystallized in the form of kesterite structures and form an alloy of CZTS and CZGS without an apparent phase separation. The Sn/Ge ratios in the alloy films were finely controlled by tuning a mixing ratio between CZTS and CZGS nanoparticles. The bandgap energy of the CZTGS film systematically increased from 1.6 to 2.1 eV as the Ge-substitution for Sn in the films proceeded, which indicates the potential of the fabrication method in the manufacture of bandgap-tuned multinary semiconductor thin films.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volume 1016)

Pages:

509-515

Citation:

Online since:

January 2021

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2021 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] H. Katagiri, K. Jimbo, W.S. Maw, K. Oishi, M. Yamazaki, H. Araki, A. Takeuchi, Development of CZTS-based thin film solar cells, Thin Solid Films 517 (2009) 2455-2460.

DOI: 10.1016/j.tsf.2008.11.002

Google Scholar

[2] A.A. Yaroshevsky, Abundances of chemical elements in the Earth's crust, Geochem. Int. 44 (2006) 48-55.

DOI: 10.1134/s001670290601006x

Google Scholar

[3] M.A. Green, E.D. Dunlop, D.H. Levi, J. Hohl-Ebinger, M. Yoshita, A.W.Y. Ho-Baillie, Solar cell efficiency tables (version 54), Prog. Photovolt: Res. Appl. 27 (2019) 565-575.

DOI: 10.1002/pip.3171

Google Scholar

[4] K. Ito, T. Nakazawa, Electrical and optical properties of stannite-type quaternary semiconductor thin films, Jpn. J. Appl. Phys. 27 (1988) 2094-2097.

DOI: 10.1143/jjap.27.2094

Google Scholar

[5] W. Wang, M.T. Winkler, O. Gunawan, T. Gokmen, T.K. Todorov, Y. Zhu, D.B. Mitzi, Device characteristics of CZTSSe thin-film solar cells with 12.6% efficiency, Adv. Energy Mater. 4 (2014) 1301465.

DOI: 10.1002/aenm.201301465

Google Scholar

[6] K. Lim, S. Yu, S. Seo, H. Shin, T. Oh, J. Yoo, Incorporation of Ge in Cu2ZnSnS4 thin film in a Zn-poor composition range, Mater. Sci. Semicond. Process. 89 (2019) 194-200.

DOI: 10.1016/j.mssp.2018.09.020

Google Scholar

[7] K. Tsuji, T. Maeda, T. Wada, Optical properties and electronic structures of Cu2ZnSnS4, Cu2ZnGeS4, and Cu2Zn(Ge,Sn)S4 and Cu2Zn(Ge,Sn)Se4 solid solutions, Jpn. J. Appl. Phys. 57 (2018) 08RC21-1-08RC21-7.

DOI: 10.7567/jjap.57.08rc21

Google Scholar

[8] I. Kim, K. Kim, Y. Oh, K. Woo, G. Cao, S. Jeong, J. Moon, Bandgap-graded Cu2Zn(Sn1-xGex)S4 thin-film solar cells derived from metal chalcogenide complex ligand capped nanocrystals, Chem. Mater. 26 (2014) 3957-3965.

DOI: 10.1021/cm501568d

Google Scholar

[9] S.E. Habas, H.A.S. Platt, M.F.A.M. van Hest, D.S. Ginley, Low-cost inorganic solar cells: from ink to printed device, Chem. Rev. 110 (2010) 6571-6894.

DOI: 10.1021/cr100191d

Google Scholar

[10] Y. Hamanaka, W. Oyaizu, M. Kawase, T. Kuzuya, Synthesis of highly non-stoichiometric Cu2ZnSnS4 nanoparticles with tunable bandgaps, J. Nanopart. Res. 19 (2017) 9.

DOI: 10.1007/s11051-016-3704-7

Google Scholar

[11] C. Fan, M.D. Regulacio, C. Ye, S.H. Lim, S.K. Lua, Q. Xu, Z. Dong, A. Xu, M. Han, Colloidal nanocrystals of orthorhombic Cu2ZnGeS4: phase-controlled synthesis, formation mechanism and photocatalytic behavior, Nanoscale 7 (2015) 3247-3253.

DOI: 10.1039/c4nr07012g

Google Scholar

[12] A. Nagaoka, K. Yoshino, H. Taniguchi, T. Taniyama, H. Miyake, Preparation of Cu2ZnSnS4 single crystals from Sn solutions, J. Cryst. Growth 341 (2012) 38-41.

DOI: 10.1016/j.jcrysgro.2011.12.046

Google Scholar

[13] M. Guc, A.P. Litvinchuk, S. Levcenko, M.Y. Valakh, I.V. Bodnar, V.M. Dzhagan, V. Izquierdo-Roca, E. Arushanov, A. Peréz-Rodriguez, Optical phonons in the kesterite Cu2ZnGeS4 semiconductor: polarized Raman spectroscopy and first-principle calculations, RSC Adv. 6 (2016) 13278-13285.

DOI: 10.1039/c5ra26844c

Google Scholar

[14] M.Y. Valakh, A.P. Litvinchuk, V.M. Dzhagan, V.O. Yukhmchuk, Y.O. Havryliuk, M. Guc, I.V. Bodnar, V. Izquierdo-Roca, A. Peréz-Rodríguez, D.R.T. Zahn, Optical properties of quaternary kesterite-type Cu2Zn(Sn1-xGex)S4 crystalline alloys: Raman scattering, photoluminescence and first-principle calculations, RSC Adv. 6 (2016) 67756-67763.

DOI: 10.1039/c6ra13608g

Google Scholar

[15] P.Y. Yu, M. Cardona, Fundamentals of Semiconductors Physics and Materials Properties, fourth ed., Springer, Berlin, (2010).

Google Scholar

[16] M. León, S. Levcenko, R. Serna, G. Gurieva, A. Nateprov, J.M. Merino, E.J. Friedrich, U. Fillat, S. Schorr, E. Arushanov, Optical constants of Cu2ZnGeS4 bulk crystals, J. Appl. Phys. 108 (2010) 093502-1-093502-5.

DOI: 10.1063/1.3500439

Google Scholar

[17] L.Q. Phuong, M. Okano, Y. Yamada, A. Nagaoka, K. Yoshino, Y. Kanemitsu, Photocarrier localization and recombination dynamics in Cu2ZnSnS4 single crystals, Appl. Phys. Lett. 103 (2013) 191902-1-191902-4.

DOI: 10.1063/1.4829063

Google Scholar