[1]
J. Gandra, H. Krohn, R. M. Miranda, P. Vilaça, L. Quintino, and J. F. Dos Santos. Friction surfacing-a review. Journal of Materials Processing Technology, 214(5):1062-1093, (2014).
DOI: 10.1016/j.jmatprotec.2013.12.008
Google Scholar
[2]
V. I. Vitanov and I. I. Voutchkov. Process parameters selection for friction surfacing applications using intelligent decision support. Journal of Materials Processing Technology, 159(1):27-32, (2005).
DOI: 10.1016/j.jmatprotec.2003.11.006
Google Scholar
[3]
J. Gandra, D. Pereira, R. M. Miranda, and P. Vilaça. Influence of process parameters in the fric tion surfacing of aa 6082t6 over aa 2024t3. Procedia CIRP, 7:341-346, (2013).
DOI: 10.1016/j.procir.2013.05.058
Google Scholar
[4]
D. Govardhan, A.C.S. Kumar, K.G.K. Murti, and G. Madhusudhan Reddy. Characterization of austenitic stainless steel friction surfaced deposit over low carbon steel. Materials & Design (19802015), 36:206-214, (2012).
DOI: 10.1016/j.matdes.2011.07.040
Google Scholar
[5]
Javed Akram, Prasad Rao Kalvala, and Mano Misra. Effect of process parameters on friction surfaced coating dimensions. Advanced Materials Research, 922:280-285, (2014).
DOI: 10.4028/www.scientific.net/amr.922.280
Google Scholar
[6]
H. Khalid Rafi, G. D. Janaki Ram, G. Phanikumar, and K. Prasad Rao. Friction surfaced tool steel (h13) coatings on low carbon steel: A study on the effects of process parameters on coating characteristics and integrity. Surface and Coatings Technology, 205(1):232-242, 2010.[7] S. Mohanasundaram, S. J. Vijay, and M. Karthikeyan. A review on developing surface compos ites using friction surfacing. Applied Mechanics and Materials, 852:402-410, (2016).
DOI: 10.1016/j.surfcoat.2010.06.052
Google Scholar
[8]
Dai Nakama, Kazuyoshi Katoh, and Hiroshi Tokisue. Some characteristics of az31/az91 dissim ilar magnesium alloy deposit by friction surfacing. Materials Transactions, 49(5):1137-1141, (2008).
DOI: 10.2320/matertrans.mc200779
Google Scholar
[9]
Hidekazu Sakihama, Hiroshi Tokisue, and Kazuyoshi Katoh. Mechanical properties of friction surfaced 5052 aluminum alloy. MATERIALS TRANSACTIONS, 44(12):2688-2694, (2003).
DOI: 10.2320/matertrans.44.2688
Google Scholar
[10]
B. Vijaya Kumar, G. Madhusudhan Reddy, and T. Mohandas. Influence of process parameters on physical dimensions of aa6063 aluminium alloy coating on mild steel in friction surfacing. Defence Technology, 11(3):275-281, (2015).
DOI: 10.1016/j.dt.2015.04.001
Google Scholar
[11]
D. Govardhan, K. Sammaiah, K.G.K. Murti, and G. Madhusudhan Reddy. Evaluation of bond quality for stainless steelcarbon steel friction surfaced deposits. Materials Today: Proceedings, 2:3511-3519, (2015).
DOI: 10.1016/j.matpr.2015.07.327
Google Scholar
[12]
H. Khalid Rafi, G. D. Janaki Ram, G. Phanikumar, and K. Prasad Rao, editors. Friction sur facing of austenitic stainless steel on low carbon steel: Studies on the efects of traverse speed, volume 2184 of Lecture notes in engineering and computer science, (2010).
DOI: 10.4028/www.scientific.net/msf.638-642.864
Google Scholar
[13]
S. Hanke and J. F. Dos Santos. Comparative study of severe plastic deformation at elevated temperatures of two aluminium alloys during friction surfacing. Journal of Materials Processing Technology, 247:257-267, (2017).
DOI: 10.1016/j.jmatprotec.2017.04.021
Google Scholar
[14]
Parisa Pirhayati and Hamed Jamshidi Aval. An investigation on thermomechanical and mi crostructural issues in friction surfacing of al-cu aluminum alloys. Materials Research Express, 6(5), (2019).
DOI: 10.1088/2053-1591/ab0635
Google Scholar
[15]
V. Fitseva, S. Hanke, and J. F. Dos Santos. Influence of rotational speed on process characteris tics, material flow and microstructure evolution in friction surfacing of ti6al4v. Materials and Manufacturing Processes, 32(5):557-563, (2016).
DOI: 10.1080/10426914.2016.1257799
Google Scholar
[16]
Zahra Rahmati, Hamed Jamshidi Aval, Salman Nourouzi, and Roohollah Jamaati. Modeling and experimental study of friction surfacing of aa2024 alloy over aa1050 plates. Materials Research Express, 6(8), (2019).
DOI: 10.1088/2053-1591/ab255a
Google Scholar
[17]
S. Hanke, P. Staron, T. Fischer, V. Fitseva, and J. F. Dos Santos. A method for the insitu study of solidstate joining techniques using synchrotron radiation observation of phase transformations in ti6al4v after friction surfacing. Surface and Coatings Technology, 335:355-367, (2017).
DOI: 10.1016/j.surfcoat.2017.12.049
Google Scholar
[18]
H. Krohn, S. Hanke, M. Beyer, and J. F. Dos Santos. Influence of external cooling configuration on friction surfacing of aa6082 t6 over aa2024 t351. Manufacturing Letters, 5:17-20, (2015).
DOI: 10.1016/j.mfglet.2015.04.004
Google Scholar
[19]
Pedro Vilaça, Hannu Hänninen, Tapio Saukkonen, and Rosa M. Miranda. Differences between secondary and primary flash formation on coating of hss with aisi 316 using friction surfacing. Welding in the World, 58(5):661-671, (2014).
DOI: 10.1007/s40194-014-0148-5
Google Scholar
[20]
X. M. Liu, Z. D. Zou, Y. H. Zhang, S. Y. Qu, and X. H. Wang. Transferring mechanism of the coating rod in friction surfacing. Surface and Coatings Technology, 202(9):1889-1894, (2008).
DOI: 10.1016/j.surfcoat.2007.08.024
Google Scholar
[21]
H. Khalid Rafi, Krishnan Balasubramaniam, G. Phanikumar, and K. Prasad Rao. Thermal profil ing using infrared thermography in friction surfacing. Metallurgical and Materials Transactions A, 42(11):3425-3429, (2011).
DOI: 10.1007/s11661-011-0750-8
Google Scholar