Investigation of Temperature Evolution and Flash Formation at AA5083 Studs during Friction Surfacing

Article Preview

Abstract:

Friction surfacing (FS), a solid-state joining process, is a coating technology for metallic materials. Frictional and plastic deformation enable the deposition of a consumable material on a substrate. Process temperatures stay below the melting point of the consumable material and are an important factor determining the quality of the resulting deposit. The focus of the current study is the experimental analysis of the flash formation and the temperature evolution in consumable studs during FS deposition of dissimilar aluminum alloys. The main process parameters, axial force, rotational speed and travel speed, were varied while the setting of the process surrounding was kept constant. The temperature evolution for the applied process parameter combinations are investigated for the stud material via infrared camera. The results show that the choice of applied force, rotational speed and travel speed did not lead to significant changes in maximum process temperature values of the consumable stud detectable via infrared camera. However, the flash formation at the tip of the plasticized stud shows significant differences for varied process parameters. Especially reduction of travelspeed or increase in axial force led to formation of larger flashes. Since the material that is pressed out of the process zone into the flash is not deposited on the substrate, the flash formation can be linked to the material efficiency of the FS process.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volume 1016)

Pages:

660-665

Citation:

Online since:

January 2021

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2021 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] J. Gandra, H. Krohn, R. M. Miranda, P. Vilaça, L. Quintino, and J. F. Dos Santos. Friction surfacing-a review. Journal of Materials Processing Technology, 214(5):1062-1093, (2014).

DOI: 10.1016/j.jmatprotec.2013.12.008

Google Scholar

[2] V. I. Vitanov and I. I. Voutchkov. Process parameters selection for friction surfacing applications using intelligent decision support. Journal of Materials Processing Technology, 159(1):27-32, (2005).

DOI: 10.1016/j.jmatprotec.2003.11.006

Google Scholar

[3] J. Gandra, D. Pereira, R. M. Miranda, and P. Vilaça. Influence of process parameters in the fric­ tion surfacing of aa 6082­t6 over aa 2024­t3. Procedia CIRP, 7:341-346, (2013).

DOI: 10.1016/j.procir.2013.05.058

Google Scholar

[4] D. Govardhan, A.C.S. Kumar, K.G.K. Murti, and G. Madhusudhan Reddy. Characterization of austenitic stainless steel friction surfaced deposit over low carbon steel. Materials & Design (1980­2015), 36:206-214, (2012).

DOI: 10.1016/j.matdes.2011.07.040

Google Scholar

[5] Javed Akram, Prasad Rao Kalvala, and Mano Misra. Effect of process parameters on friction surfaced coating dimensions. Advanced Materials Research, 922:280-285, (2014).

DOI: 10.4028/www.scientific.net/amr.922.280

Google Scholar

[6] H. Khalid Rafi, G. D. Janaki Ram, G. Phanikumar, and K. Prasad Rao. Friction surfaced tool steel (h13) coatings on low carbon steel: A study on the effects of process parameters on coating characteristics and integrity. Surface and Coatings Technology, 205(1):232-242, 2010.[7] S. Mohanasundaram, S. J. Vijay, and M. Karthikeyan. A review on developing surface compos­ ites using friction surfacing. Applied Mechanics and Materials, 852:402-410, (2016).

DOI: 10.1016/j.surfcoat.2010.06.052

Google Scholar

[8] Dai Nakama, Kazuyoshi Katoh, and Hiroshi Tokisue. Some characteristics of az31/az91 dissim­ ilar magnesium alloy deposit by friction surfacing. Materials Transactions, 49(5):1137-1141, (2008).

DOI: 10.2320/matertrans.mc200779

Google Scholar

[9] Hidekazu Sakihama, Hiroshi Tokisue, and Kazuyoshi Katoh. Mechanical properties of friction surfaced 5052 aluminum alloy. MATERIALS TRANSACTIONS, 44(12):2688-2694, (2003).

DOI: 10.2320/matertrans.44.2688

Google Scholar

[10] B. Vijaya Kumar, G. Madhusudhan Reddy, and T. Mohandas. Influence of process parameters on physical dimensions of aa6063 aluminium alloy coating on mild steel in friction surfacing. Defence Technology, 11(3):275-281, (2015).

DOI: 10.1016/j.dt.2015.04.001

Google Scholar

[11] D. Govardhan, K. Sammaiah, K.G.K. Murti, and G. Madhusudhan Reddy. Evaluation of bond quality for stainless steel­carbon steel friction surfaced deposits. Materials Today: Proceedings, 2:3511-3519, (2015).

DOI: 10.1016/j.matpr.2015.07.327

Google Scholar

[12] H. Khalid Rafi, G. D. Janaki Ram, G. Phanikumar, and K. Prasad Rao, editors. Friction sur­ facing of austenitic stainless steel on low carbon steel: Studies on the efects of traverse speed, volume 2184 of Lecture notes in engineering and computer science, (2010).

DOI: 10.4028/www.scientific.net/msf.638-642.864

Google Scholar

[13] S. Hanke and J. F. Dos Santos. Comparative study of severe plastic deformation at elevated temperatures of two aluminium alloys during friction surfacing. Journal of Materials Processing Technology, 247:257-267, (2017).

DOI: 10.1016/j.jmatprotec.2017.04.021

Google Scholar

[14] Parisa Pirhayati and Hamed Jamshidi Aval. An investigation on thermo­mechanical and mi­ crostructural issues in friction surfacing of al-cu aluminum alloys. Materials Research Express, 6(5), (2019).

DOI: 10.1088/2053-1591/ab0635

Google Scholar

[15] V. Fitseva, S. Hanke, and J. F. Dos Santos. Influence of rotational speed on process characteris­ tics, material flow and microstructure evolution in friction surfacing of ti­6al­4v. Materials and Manufacturing Processes, 32(5):557-563, (2016).

DOI: 10.1080/10426914.2016.1257799

Google Scholar

[16] Zahra Rahmati, Hamed Jamshidi Aval, Salman Nourouzi, and Roohollah Jamaati. Modeling and experimental study of friction surfacing of aa2024 alloy over aa1050 plates. Materials Research Express, 6(8), (2019).

DOI: 10.1088/2053-1591/ab255a

Google Scholar

[17] S. Hanke, P. Staron, T. Fischer, V. Fitseva, and J. F. Dos Santos. A method for the in­situ study of solid­state joining techniques using synchrotron radiation ­ observation of phase transformations in ti­6al­4v after friction surfacing. Surface and Coatings Technology, 335:355-367, (2017).

DOI: 10.1016/j.surfcoat.2017.12.049

Google Scholar

[18] H. Krohn, S. Hanke, M. Beyer, and J. F. Dos Santos. Influence of external cooling configuration on friction surfacing of aa6082 t6 over aa2024 t351. Manufacturing Letters, 5:17-20, (2015).

DOI: 10.1016/j.mfglet.2015.04.004

Google Scholar

[19] Pedro Vilaça, Hannu Hänninen, Tapio Saukkonen, and Rosa M. Miranda. Differences between secondary and primary flash formation on coating of hss with aisi 316 using friction surfacing. Welding in the World, 58(5):661-671, (2014).

DOI: 10.1007/s40194-014-0148-5

Google Scholar

[20] X. M. Liu, Z. D. Zou, Y. H. Zhang, S. Y. Qu, and X. H. Wang. Transferring mechanism of the coating rod in friction surfacing. Surface and Coatings Technology, 202(9):1889-1894, (2008).

DOI: 10.1016/j.surfcoat.2007.08.024

Google Scholar

[21] H. Khalid Rafi, Krishnan Balasubramaniam, G. Phanikumar, and K. Prasad Rao. Thermal profil­ ing using infrared thermography in friction surfacing. Metallurgical and Materials Transactions A, 42(11):3425-3429, (2011).

DOI: 10.1007/s11661-011-0750-8

Google Scholar