p.624
p.630
p.636
p.642
p.648
p.654
p.660
p.666
p.672
Improvement on Impact Toughness of Cold Formed S420 Steel by Direct Quenching
Abstract:
The aim of this work is to study the effect cold forming rate (CFR) on the mechanical properties and microstructure of a conventional TMCP and a direct-quenched steel in 420 MPa strength level. The microstructure was characterized using FESEM-EBSD. Tensile properties and Charpy-V impact toughness were determined. As the CFR increased, the yield and tensile strength raised quite linearly with both steels. Yield strength values increased from 450 MPa (as-rolled material) to 700 MPa (25 % CFR). However, tensile strength increased less compared to yield strength. Uniform elongation decreased linearly till about 10 % CFR and total elongation till about 15 – 20 % CFR. The impact values decreased quite linearly in -40 °C and -60 °C test temperature when the cold forming rate increased. In longitudinal direction (L-T) the impact values were at high level at -40 °C and -60 °C with both steels with all CFR. In transverse direction (T-L) the impact results were lower. Impact energies were enhanced by direct quenching compared to conventional steel in every CFR stage. EBSD results showed no major difference between steels in the grain sizes in generally. However, cold forming decreased the grain size and increased low-angle grain boundaries in correlation with increasing CFR. Small size of the coarsest grains (d90%) usually indicate better toughness, however in this case the impact values were decreased even with smaller grain size as cold deformation occurs. On the other hand, the strength level increased with forming rate. Therefore, a brief discussion of the microstructural features controlling the impact toughness is given.
Info:
Periodical:
Pages:
648-653
Citation:
Online since:
January 2021
Authors:
Price:
Сopyright:
© 2021 Trans Tech Publications Ltd. All Rights Reserved
Share:
Citation: