[1]
H. Soda, G. Motoyasu, A. McLean, S. D. Bagheri, and D. D. Perovic, Continuous casting of unidirectionally solidified copper rod,, Int. J. Cast Met. Res., vol. 9, no. 1, p.37–44, May (1996).
DOI: 10.1080/13640461.1996.11819642
Google Scholar
[2]
K. Härkki and J. Miettinen, Mathematical modeling of copper and brass upcasting,, Metall. Mater. Trans. B, vol. 30, no. 1, p.75–98, Feb. (1999).
DOI: 10.1007/s11663-999-0009-6
Google Scholar
[3]
H. R. Müller, Continuous Casting: Proceedings of the International Conference on Continuous Casting of Non-Ferrous Metals. Wiley, (2006).
DOI: 10.1002/9783527607969.ch45
Google Scholar
[4]
D. Mackie, J. D. Robson, P. J. Withers, and M. Turski, Characterisation and modelling of defect formation in direct-chill cast AZ80 alloy,, Mater. Charact., vol. 104, p.116–123, (2015).
DOI: 10.1016/j.matchar.2015.03.033
Google Scholar
[5]
B. Yang, A. Raza, F. Bai, T. Zhang, and Z. Wang, Microstructural evolution within mushy zone during paraffin's melting and solidification,, Int. J. Heat Mass Transf., vol. 141, p.769–778, (2019).
DOI: 10.1016/j.ijheatmasstransfer.2019.07.019
Google Scholar
[6]
Z. Boz, F. Erdogdu, and M. Tutar, Effects of mesh refinement, time step size and numerical scheme on the computational modeling of temperature evolution during natural-convection heating,, J. Food Eng., vol. 123, p.8–16, (2014).
DOI: 10.1016/j.jfoodeng.2013.09.008
Google Scholar
[7]
E.-R. Bagherian, Y. Fan, M. Cooper, B. Frame, and A. Abdolvand, Effect of water flow rate, casting speed, alloying elements and pull distance on tensile strength, elongation percentage and microstructure of continuous cast copper alloys,, Met. Res. Technol., vol. 113, no. 3, p.308, (2016).
DOI: 10.1051/metal/2016006
Google Scholar
[8]
L. Nastac, K. Pericleous, A. S. Sabau, L. Zhang, and B. G. Thomas, CFD Modeling and Simulation in Materials Processing 2018. Springer International Publishing, (2018).
DOI: 10.1007/978-3-319-72059-3
Google Scholar
[9]
Ansys, Ansys Theory Guide, Release 15.0. (2013).
Google Scholar
[10]
M. Fadl and P. C. Eames, Numerical investigation of the influence of mushy zone parameter Amush on heat transfer characteristics in vertically and horizontally oriented thermal energy storage systems,, Appl. Therm. Eng., vol. 151, p.90–99, (2019).
DOI: 10.1016/j.applthermaleng.2019.01.102
Google Scholar
[11]
ASTM International, ASTM E112-13, Standard Test Methods for Determining Average Grain Size,, (2013).
Google Scholar
[12]
K. Liu, C. Wang, G. Liu, D. Ning, S. Qi-song, and Zhi-hongTian., Research on Soft Reduction Amount Distribution to Eliminate Typical Inter-dendritic Crack in Continuous Casting Slab of X70 Pipeline Steel by Numerical Model,, High Temp. Mater. Process., vol. 36, no. 4, p.359–372, (2017).
DOI: 10.1515/htmp-2016-0160
Google Scholar
[13]
M. Hameter and H. Walter, Influence of the Mushy Zone Constant on the Numerical Simulation of the Melting and Solidification Process of Phase Change Materials,, in 26 European Symposium on Computer Aided Process Engineering, vol. 38, Z. Kravanja and M. B. T.-C. A. C. E. Bogataj, Eds. Elsevier, 2016, p.439–444.
DOI: 10.1016/b978-0-444-63428-3.50078-3
Google Scholar