[1]
Han, L.H., Li, W. and Bjorhovde, R., Developments and advanced applications of concrete-filled steel tubular (CFST) structures: Members. Journal of Constructional Steel Research, 100 (2014) 211-228.
DOI: 10.1016/j.jcsr.2014.04.016
Google Scholar
[2]
Thumrongvut, J. and Tiwjantuk, P., Strength and axial behavior of cellular lightweight concrete-filled steel rectangular tube columns under axial compression. Materials Science Forum, 941(2018) 2417-2422.
DOI: 10.4028/www.scientific.net/msf.941.2417
Google Scholar
[3]
Thumrongvut, J. and Seangatith, S., Axial load capacity of cellular lightweight concrete-filled steel square tube columns. Central Europe towards Sustainable Building (CESB 2016): Innovations for Sustainable Future, Czech Republic, 22-24 June 2016, 1312-1319.
DOI: 10.4028/www.scientific.net/msf.860.121
Google Scholar
[4]
Elremaily, A. and Azizinamini, A., Behavior and strength of circular concrete-filled tube columns. Journal of Constructional Steel Research, 58(12) (2002) 1567-1591.
DOI: 10.1016/s0143-974x(02)00005-6
Google Scholar
[5]
Liu, D., Gho, W.M. and Yuan, J., Ultimate capacity of high-strength rectangular concrete-filled steel hollow section stub columns. Journal of Constructional Steel Research, 59(12) (2003) 1499-1515.
DOI: 10.1016/s0143-974x(03)00106-8
Google Scholar
[6]
Giakoumelis, G. and Lam, D., Axial capacity of circular concrete-filled tube columns. Journal of Constructional Steel Research, 60(7) (2004) 1049-1068.
DOI: 10.1016/j.jcsr.2003.10.001
Google Scholar
[7]
Xiao, Y., He, W. and Choi, K., Confined concrete filled tubular columns. Journal of Structural Engineering, 131(3) (2005) 488-497.
DOI: 10.1061/(asce)0733-9445(2005)131:3(488)
Google Scholar
[8]
Seangatith, S. and Thumrongvut, J., Behaviors of square thin-walled steel tubed RC columns under direct axial compression on RC core. Procedia Engineering, 14 (2011) 513-520.
DOI: 10.1016/j.proeng.2011.07.064
Google Scholar
[9]
Chen, B., Liu, X. and Li, S.J., Performance investigation of square concrete-filled steel tube columns. Journal of Wuhan University of Technology-Mater. Sci. Ed., 26(4) (2011) 730-736.
DOI: 10.1007/s11595-011-0302-5
Google Scholar
[10]
Ding, F., Liu, J., Liu, X., Yu, Z. and Li, D., Mechanical behavior of circular and square concrete filled steel tube stub columns under local compression. Thin-Walled Structures, 94 (2015) 155-166.
DOI: 10.1016/j.tws.2015.04.020
Google Scholar
[11]
Thumrongvut, J., Seangatith, S., Siriparinyanan, T. and Wangrakklang, S., An experimental behaviour of cellular lightweight concrete-filled steel square tube columns under axial compression. Materials Science Forum, 860 (2016) 121-124.
DOI: 10.4028/www.scientific.net/msf.860.121
Google Scholar
[12]
Lue, D.M., Liu, J.L. and Yen, T., Experimental study on rectangular CFT columns with high-strength concrete. Journal of Constructional Steel Research, 63(1) (2007) 37-44.
DOI: 10.1016/j.jcsr.2006.03.007
Google Scholar
[13]
Zhang, S. and Liu, J., Seismic behavior and strength of square tube confined reinforced-concrete (STRC) columns. Journal of Constructional Steel Research, 63(9) (2007) 1194-1207.
DOI: 10.1016/j.jcsr.2006.11.017
Google Scholar
[14]
Lu, Y., Li, N., Li, S. and Liang, H., Behavior of steel fiber reinforced concrete-filled steel tube columns under axial compression. Construction and Building Materials, 95 (2015) 74-85.
DOI: 10.1016/j.conbuildmat.2015.07.114
Google Scholar
[15]
Han, L.H. and Huo, J.S., Concrete-filled hollow structural steel columns after exposure to ISO-834 fire standard. Journal of Structural Engineering, 129(1) (2003) 68-78.
DOI: 10.1061/(asce)0733-9445(2003)129:1(68)
Google Scholar
[16]
Liu, F., Gardner, L. and Yang, H., Post-fire behaviour of reinforced concrete stub columns confined by circular steel tubes. Journal of Constructional Steel Research, 102 (2014) 82-103.
DOI: 10.1016/j.jcsr.2014.06.015
Google Scholar
[17]
Short, N., Purkiss, J. and Guise, S., Assessment of fire damaged concrete using colour image analysis. Construction and Building Materials, 15 (2001) 9-15.
DOI: 10.1016/s0950-0618(00)00065-9
Google Scholar
[18]
Li, W., Luo, Z., Tao, Z., Duan, W.H. and Shah, S.P. Mechanical behavior of recycled aggregate concrete-filled steel tube stub columns after exposure to elevated temperatures. Construction and Building Materials, 146 (2017) 571-581.
DOI: 10.1016/j.conbuildmat.2017.04.118
Google Scholar
[19]
Mohamedbhai, G.G. Effect of exposure time and rates of heating and cooling on residual strength of heated concrete. Magazine of Concrete Research, 38(136) (1986) 151-158.
DOI: 10.1680/macr.1986.38.136.151
Google Scholar
[20]
EN 1992-1-2, Eurocode 2. Design of Concrete Structures Part 1-2: General Rules - Structural Fire Design, European Committee for Standardization, Brussels, (2004).
Google Scholar
[21]
Yao, Y and Hu, X.X. Cooling behavior and residual strength of post-fire concrete filled steel tubular columns. Journal of Constructional Steel Research, 112 (2015) 282-292.
DOI: 10.1016/j.jcsr.2015.05.020
Google Scholar
[22]
Neves, I.C., Rodrigues, J.C. and Loureiro, A.P. Mechanical properties of reinforcing and prestressing steels after heating. Journal of Materials in Civil Engineering, 8(4) (1996) 189-194.
DOI: 10.1061/(asce)0899-1561(1996)8:4(189)
Google Scholar
[23]
ACI Committee 318, Building Code Requirement for Structural Concrete and Commentary. Farmington Hills: ACI Committee 318-11, (2011).
DOI: 10.1061/(asce)1076-0431(1996)2:3(120.3)
Google Scholar