Orientation Analysis

Article Preview

Abstract:

Simple figures illustrate the basic concepts: orientation, Euler angles, Euler space, orientation density function, pole density function. The iteration that decisively influenced the development of orientation analysis follows directly from the relationship between the two density functions. The minimum principle defines the initial function and the structure of the iteration. Using model orientation density function, we prove that this kind of orientation analysis is extremely effective.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volume 1016)

Pages:

605-610

Citation:

Online since:

January 2021

Authors:

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2021 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] J. F. Nye, Physical Properties of Crystals, Oxford University Press, (1985).

Google Scholar

[2] H. J. Bunge, Texture Analysis in Materials Science, Digital Edition, Wolfratshausen, (2015).

Google Scholar

[3] J. Imhof, The Resolution of Orientation Space with Reference to Pole-figure Resolution, Textures and Microstructures. Vol. 4 (1982) 189-200 (Received in 1980).

DOI: 10.1155/tsm.4.189

Google Scholar

[4] S. Matthies and G. W. Vinel, phys. stat. sol. (b) 112 (1982) Klll-K120.

Google Scholar

[5] K.Pawlik, Determination of the Orientation Distribution Function from Pole Figures in Arbitrarily Defined Cells, phys. stat. sol. (b) 134 (1986) 477.

DOI: 10.1002/pssb.2221340205

Google Scholar

[6] J. Imhof, Die Bestimmung einer Naherung für die Funktion der Orientierungsverteilung aus einer Polfigur, Z. Metallkde. 68 (1977) 38-43.

DOI: 10.1515/ijmr-1977-680108

Google Scholar

[7] P. I. Welch, M. Dahms, H. J. Bunge, Series Truncation Effects and Ghost Correction in the Zero-Range Method, in: Theoretical Methods of Texture Analysis, edited by H. J. Bunge, DGM, 1987, pp.63-77.

Google Scholar

[8] J. Imhof, Determination of the Orientation Distribution Function from One Pole-Figure, Proceedings ICOTOM 6 (1981) 1334-1444.

Google Scholar

[9] S. Matthies, G. V. Vinel, K. Helming, Standard Distributions in Texture Analysis, Vol. 1, Akademieverlag, Berlin, 1987 (In CD: Courtesy of Professor S. Matthies, 2010).

Google Scholar