Microstructure and Mechanical Properties of the UFG Magnesium Alloy Mg-1%Ca

Article Preview

Abstract:

The influence of grain refinement by high pressure torsion (HPT) on microstructure of the Mg-1%Ca alloy was investigated by scanning and transmission electron microscopy. To The microhardness measurements and tensile tests of small samples were used to determine the mechanical properties of UFG samples. It was found that a uniform structure with an average grain size of 210 nm processed by HPT lead to high microhardness equal to 100 HV. Investigations of thermal stability demonstrated that additional heat treatment of the UFG samples at 250 oC provides good combination of high strength of 245 MPa and ductility of 4%.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volume 1016)

Pages:

768-773

Citation:

Online since:

January 2021

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2021 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Y.B. Guo, M. Salahshoor, Biodegradable orthopedic magnesium-calcium (MgCa) alloys, processing, and corrosion performance, Materialia. 5 (2012) 135-155.

DOI: 10.3390/ma5010135

Google Scholar

[2] Y.F Zheng, X.N. Gu, F. Witte, Biodegradable metals, Mat. Sci. Eng. R. 77 (2014) 1-34.

Google Scholar

[3] М.Р. Staiger A.M. Pietak, J. Huadmai, G. Dias, Magnesium and its alloys as orthopedic biomaterials: a review, Biomater. 27(9) (2006) 1728-1734.

DOI: 10.1016/j.biomaterials.2005.10.003

Google Scholar

[4] R. Nowosielski, A. Gawlas-Mucha, A. Borowski, A. Guwer, Fabrication and properties of magnesium based alloys Mg-Ca, J. Achiev. Mater. Manufact. Eng. 61(2) (2013) 367-374.

Google Scholar

[5] H.R. Bakhsheshi-Rad, M.H. Idris, M.R. Abdul-Kadir, S. Farahany, Characterization and corrosion behavior of biodegradable Mg-Ca and Mg-Ca-Zn implant alloys, Appl. Mech. and Mater. 121-126 (2012) 568-572.

DOI: 10.4028/www.scientific.net/amm.121-126.568

Google Scholar

[6] N. Kirkland, J. Lespagnol, N. Birbilas, M.P. Staiger, A survey of bio-corrosion rates of magnesium alloys, Corr. Sci. 52 (2010) 287291.

DOI: 10.1016/j.corsci.2009.09.033

Google Scholar

[7] Z. Li, X. Gu, S. Lou, Y. Zheng, The development of binary Mg-Ca alloys for use as biodegradable materials within bone, Biomater. 29 (2008) 1329-1344.

DOI: 10.1016/j.biomaterials.2007.12.021

Google Scholar

[8] R.Z. Valiev, R.K. Islamgaliev, I.V. Alexandrov, Bulk nanostructured materials from severe plastic deformation, Prog. Mat. Sci. 45 (2000) 103-189.

DOI: 10.1016/s0079-6425(99)00007-9

Google Scholar

[9] J. Čižek, I. Procházka, B. Smola, R.K. Islamgaliev, O. Kulyasova, Microstructure and Thermal Stability of Ultra Fine Grained Mg-Based Alloys Prepared by High Pressure Torsion, Mat. Sci. Forum. 503-504 (2006) 149-154.

DOI: 10.4028/www.scientific.net/msf.503-504.149

Google Scholar

[10] E.V. Vasilev, V.I. Kopylov, M.L. Linderov, A.I. Brilevsky, D.L. Merson, A.Yu. Vinogradov, High strength and fatigue properties of Mg-Zn-Ca alloys after severe plastic deformation, Letters on Materials. 9(2) (2019) 157-161.

DOI: 10.22226/2410-3535-2019-2-157-161

Google Scholar

[11] S.V. Dobatkin, E.A. Lukyanova, et. al, Strength, corrosion resistance, and biocompatibility of ultrafine-grained Mg alloys after different modes of severe plastic deformation, IOP Conf. Ser.: Mat. Sci. Eng. 194 (2017) 012004.

DOI: 10.1088/1757-899x/194/1/012004

Google Scholar

[12] O. Kulyasova, R. Islamgaliev, B. Mingler, M. Zehetbauer, Microstructure and fatigue properties of the ultrafine-grained AM60 magnesium alloy processed by equal-channel angular pressing, Mat. Sci. Eng. A. 503 (1-2) (2009) 176-180.

DOI: 10.1016/j.msea.2008.03.057

Google Scholar

[13] E. Zhang, L. Yang, Microstructure, mechanical properties and bio-corrosion properties of Mg-Zn-Mn-Ca alloy for biomedical application, Mat. Sci. Eng. A. 497 (1-2) (2008) 111-118.

DOI: 10.1016/j.msea.2008.06.019

Google Scholar

[14] H.R. Bakhsheshi-Rad, M.R. Abdul-Kadir, M.H. Idris, S. Farahany, Relationship between the corrosion behavior and the thermal characteristics and microstructure of Mg–0.5 Ca–xZn alloys, Cor. Sci. 64 (2012) 184-197.

DOI: 10.1016/j.corsci.2012.07.015

Google Scholar

[15] J.H. Gao, S.K. Guan, Z.W. Ren, Y.F. Sun, S.J. Zhu, B. Wang, Homogeneous corrosion of high pressure torsion treated Mg–Zn–Ca alloy in simulated body fluid, Mat. Let. 65 (2011) 691-693.

DOI: 10.1016/j.matlet.2010.11.015

Google Scholar

[16] G.B. Walker, M. Marezio, Lattice parameters and zone overlap in solid solutions of lead in magnesium, Acta. Metall. 7 (12) (1959) 769-773.

DOI: 10.1016/0001-6160(59)90090-2

Google Scholar

[17] L.B. Tong, M.Y. Zheng, H. Chang, X.S. Hua, K. Wu, S.W. Xu, S. Kamado, Y. Kojima. Microstructure and mechanical properties of Mg–Zn–Ca alloy processed by equal channel angular pressing, Mat. Sci. Eng. A. 523 (2009) 289-294.

DOI: 10.1016/j.msea.2009.06.021

Google Scholar

[18] O.B. Kulyasova, R.K. Islamgaliev, Y. Zhao, R.Z. Valiev, Enhancement of the Mechanical Properties of an Mg–Zn–Ca Alloy Using High-Pressure Torsion, AEM. 17 (12) (2015) 1738-1741.

DOI: 10.1002/adem.201500176

Google Scholar