[1]
B.P. Bewlay, S. Nag, A. Suzuki, M.J. Weimer, TiAl alloys in commercial aircraft engines, Mater. High Temp. 33 (2016) 549–559.
DOI: 10.1080/09603409.2016.1183068
Google Scholar
[2]
Y.W. Kim, S.L. Kim, Advances in gammalloy materials–processes–application technology: Successes, dilemmas, and future, JOM. 70 (2018) 553–560.
DOI: 10.1007/s11837-018-2747-x
Google Scholar
[3]
H. Gabrisch, A. Stark, F.P. Schimansky, L. Wang, N. Schell, U. Lorenz, F. Pyczak, Investigation of carbides in Ti-45Al-5Nb-xC alloys (0 ≤ x ≤ 1) by transmission electron microscopy and high energy-XRD, Intermetallics. 33 (2013) 44–53.
DOI: 10.1016/j.intermet.2012.09.023
Google Scholar
[4]
A. Klimová, J. Lapin, Effect of Al content on microstructure of Ti-Al-Nb-C-Mo composites reinforced with carbide particles, Kov. Mater. 57 (2019) 377–387.
DOI: 10.4149/km_2019_6_377
Google Scholar
[5]
A. Klimová, J. Lapin, Effects of C and N additions on primary MAX phase particles in intermetallic Ti-Al-Nb-Mo matrix in-situ composites prepared by vacuum induction melting, Kov. Mater. 57 (2019) 151–157.
DOI: 10.4149/km_2019_3_151
Google Scholar
[6]
M. Štamborská, J. Lapin, O. Bajana, Effect of carbon on the room temperature compressive behaviour of Ti-44.5Al-8Nb-0.8Mo-xC alloys prepared by vacuum induction melting, Kov. Mater. 56 (2018) 349–356.
DOI: 10.4149/km_2018_6_349
Google Scholar
[7]
J. Lapin, M. Štamborská, T. Pelachová, O. Bajana, Fracture behaviour of cast in-situ TiAl matrix composite reinforced with carbide particles, Mater. Sci. Eng. A. 721 (2018) 1–7.
DOI: 10.1016/j.msea.2018.02.077
Google Scholar
[8]
J. Lapin, A. Klimová, Vacuum induction melting and casting of TiAl-based matrix in-situ composites reinforced by carbide particles using graphite crucibles and moulds, Vacuum. 169 (2019) 108930.
DOI: 10.1016/j.vacuum.2019.108930
Google Scholar
[9]
M. Bünck, T. Stoyanov, J. Schievenbusch, H. Michels, A. Gußfeld, Titanium aluminide casting technology development, JOM. 69 (2017) 2565–2570.
DOI: 10.1007/s11837-017-2534-0
Google Scholar
[10]
K. Kothari, R. Radhakrishnan, N.M. Wereley, Advances in gamma titanium aluminides and their manufacturing techniques, Prog. Aerosp. Sci. 55 (2012) 1–16.
DOI: 10.1016/j.paerosci.2012.04.001
Google Scholar
[11]
K. Kamyshnykova, J. Lapin, Vacuum induction melting and solidification of TiAl-based alloy in graphite crucibles, Vacuum. 154 (2018) 218–226.
DOI: 10.1016/j.vacuum.2018.05.017
Google Scholar
[12]
J. Lapin, K. Kamyshnykova, Processing, microstructure and mechanical properties of in-situ Ti3Al+TiAl matrix composite reinforced with Ti2AlC particles prepared by centrifugal casting, Intermetallics. 98 (2018) 34–44.
DOI: 10.1016/j.intermet.2018.04.012
Google Scholar
[13]
K. Kamyshnykova, J. Lapin, Grain refinement of cast peritectic TiAl-based alloy by solid-state phase transformations, Kov. Mater. 56 (2018) 277–287.
DOI: 10.4149/km_2018_5_277
Google Scholar
[14]
C. Herzig, T. Przeorski, Y. Mishin, Self-diffusion in γ-TiAl: an experimental study and atomistic calculations, Intermetallics. 7 (1999) 389–404.
DOI: 10.1016/S0966-9795(98)00117-4
Google Scholar
[15]
J. Lapin, T. Pelachová, O. Bajana, High temperature deformation behaviour and microstructure of cast in-situ TiAl matrix composite reinforced with carbide particles, J. Alloys Compd. 797 (2019) 754–765.
DOI: 10.1016/j.jallcom.2019.05.136
Google Scholar
[16]
F. Appel, Diffusion assisted dislocation climb in intermetallic gamma TiAl, Mater. Sci. Eng. A. 317 (2001) 115–127.
DOI: 10.1016/S0921-5093(01)01169-8
Google Scholar
[17]
M. Kastenhuber, B. Rashkova, H. Clemens, S. Mayer, Enhancement of creep properties and microstructural stability of intermetallic β-solidifying γ-TiAl based alloys, Intermetallics. 63 (2015) 19–26.
DOI: 10.1016/j.intermet.2015.03.017
Google Scholar
[18]
J. Lapin, Comparative study of creep of cast Ti-46Al-2W-0.5Si and Ti-45Al-2W-0.6Si-0.7B alloys, Kov. Mater. 44 (2006) 57–64.
Google Scholar
[19]
J. Lapin, T. Pelachová, M. Dománková, Creep behaviour of a new air-hardenable intermetallic Ti-46Al-8Ta alloy, Intermetallics. 19 (2011) 814–819.
DOI: 10.1016/j.intermet.2010.11.023
Google Scholar