Enhancing High-Temperature Creep Resistance of In Situ TiAl-Based Matrix Composite by Low Volume Fraction of Ti2AlC Particles

Article Preview

Abstract:

Samples of TiAl-based matrix in-situ composite with the chemical composition Ti-46.4Al-5.1Nb-1C-0.2B (at.%) reinforced with a low volume fraction of primary Ti2AlC particles were prepared by vacuum induction melting in graphite crucibles and centrifugal casting into graphite moulds. The hot isostatic pressing (HIP) of the as-cast samples and subsequent heat treatments leads to the formation of equiaxed grains with fully lamellar α2(Ti3Al) + γ (TiAl) microstructure and uniformly distributed Ti2AlC and TiB particles. The minimum creep rates of the in-situ composite are significantly lower compared to those measured for the counterpart low carbon benchmark alloy with the chemical composition Ti-47Al-5.2Nb-0.2C-0.2B (at.%) at temperatures ranging from 800 to 900 °C and applied stress of 200 MPa. The studied in-situ composite shows also significantly improved creep resistance compared to that of some TiAl-based alloys with fully lamellar, convoluted and pseudo-duplex microstructures at a temperature of 800 °C and applied stress of 200 MPa.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volume 1016)

Pages:

792-797

Citation:

Online since:

January 2021

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2021 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] B.P. Bewlay, S. Nag, A. Suzuki, M.J. Weimer, TiAl alloys in commercial aircraft engines, Mater. High Temp. 33 (2016) 549–559.

DOI: 10.1080/09603409.2016.1183068

Google Scholar

[2] Y.W. Kim, S.L. Kim, Advances in gammalloy materials–processes–application technology: Successes, dilemmas, and future, JOM. 70 (2018) 553–560.

DOI: 10.1007/s11837-018-2747-x

Google Scholar

[3] H. Gabrisch, A. Stark, F.P. Schimansky, L. Wang, N. Schell, U. Lorenz, F. Pyczak, Investigation of carbides in Ti-45Al-5Nb-xC alloys (0 ≤ x ≤ 1) by transmission electron microscopy and high energy-XRD, Intermetallics. 33 (2013) 44–53.

DOI: 10.1016/j.intermet.2012.09.023

Google Scholar

[4] A. Klimová, J. Lapin, Effect of Al content on microstructure of Ti-Al-Nb-C-Mo composites reinforced with carbide particles, Kov. Mater. 57 (2019) 377–387.

DOI: 10.4149/km_2019_6_377

Google Scholar

[5] A. Klimová, J. Lapin, Effects of C and N additions on primary MAX phase particles in intermetallic Ti-Al-Nb-Mo matrix in-situ composites prepared by vacuum induction melting, Kov. Mater. 57 (2019) 151–157.

DOI: 10.4149/km_2019_3_151

Google Scholar

[6] M. Štamborská, J. Lapin, O. Bajana, Effect of carbon on the room temperature compressive behaviour of Ti-44.5Al-8Nb-0.8Mo-xC alloys prepared by vacuum induction melting, Kov. Mater. 56 (2018) 349–356.

DOI: 10.4149/km_2018_6_349

Google Scholar

[7] J. Lapin, M. Štamborská, T. Pelachová, O. Bajana, Fracture behaviour of cast in-situ TiAl matrix composite reinforced with carbide particles, Mater. Sci. Eng. A. 721 (2018) 1–7.

DOI: 10.1016/j.msea.2018.02.077

Google Scholar

[8] J. Lapin, A. Klimová, Vacuum induction melting and casting of TiAl-based matrix in-situ composites reinforced by carbide particles using graphite crucibles and moulds, Vacuum. 169 (2019) 108930.

DOI: 10.1016/j.vacuum.2019.108930

Google Scholar

[9] M. Bünck, T. Stoyanov, J. Schievenbusch, H. Michels, A. Gußfeld, Titanium aluminide casting technology development, JOM. 69 (2017) 2565–2570.

DOI: 10.1007/s11837-017-2534-0

Google Scholar

[10] K. Kothari, R. Radhakrishnan, N.M. Wereley, Advances in gamma titanium aluminides and their manufacturing techniques, Prog. Aerosp. Sci. 55 (2012) 1–16.

DOI: 10.1016/j.paerosci.2012.04.001

Google Scholar

[11] K. Kamyshnykova, J. Lapin, Vacuum induction melting and solidification of TiAl-based alloy in graphite crucibles, Vacuum. 154 (2018) 218–226.

DOI: 10.1016/j.vacuum.2018.05.017

Google Scholar

[12] J. Lapin, K. Kamyshnykova, Processing, microstructure and mechanical properties of in-situ Ti3Al+TiAl matrix composite reinforced with Ti2AlC particles prepared by centrifugal casting, Intermetallics. 98 (2018) 34–44.

DOI: 10.1016/j.intermet.2018.04.012

Google Scholar

[13] K. Kamyshnykova, J. Lapin, Grain refinement of cast peritectic TiAl-based alloy by solid-state phase transformations, Kov. Mater. 56 (2018) 277–287.

DOI: 10.4149/km_2018_5_277

Google Scholar

[14] C. Herzig, T. Przeorski, Y. Mishin, Self-diffusion in γ-TiAl: an experimental study and atomistic calculations, Intermetallics. 7 (1999) 389–404.

DOI: 10.1016/S0966-9795(98)00117-4

Google Scholar

[15] J. Lapin, T. Pelachová, O. Bajana, High temperature deformation behaviour and microstructure of cast in-situ TiAl matrix composite reinforced with carbide particles, J. Alloys Compd. 797 (2019) 754–765.

DOI: 10.1016/j.jallcom.2019.05.136

Google Scholar

[16] F. Appel, Diffusion assisted dislocation climb in intermetallic gamma TiAl, Mater. Sci. Eng. A. 317 (2001) 115–127.

DOI: 10.1016/S0921-5093(01)01169-8

Google Scholar

[17] M. Kastenhuber, B. Rashkova, H. Clemens, S. Mayer, Enhancement of creep properties and microstructural stability of intermetallic β-solidifying γ-TiAl based alloys, Intermetallics. 63 (2015) 19–26.

DOI: 10.1016/j.intermet.2015.03.017

Google Scholar

[18] J. Lapin, Comparative study of creep of cast Ti-46Al-2W-0.5Si and Ti-45Al-2W-0.6Si-0.7B alloys, Kov. Mater. 44 (2006) 57–64.

Google Scholar

[19] J. Lapin, T. Pelachová, M. Dománková, Creep behaviour of a new air-hardenable intermetallic Ti-46Al-8Ta alloy, Intermetallics. 19 (2011) 814–819.

DOI: 10.1016/j.intermet.2010.11.023

Google Scholar