[1]
P M. Mignanelli, N G. Jones, K M. Perkins, M C. Hardy and H J. Stone, Microstructural evolution of a delta containing nickel-base superalloy during heat treatment and isothermal forging, J. Mater. Sci. Eng. A. 621 (2015) 265-271.
DOI: 10.1016/j.msea.2014.10.071
Google Scholar
[2]
H J. McQueen, C A. Imbert, Dynamic recrystallization: plasticity enhancing structural development, J. Alloys and Compounds. 378 (2004) 35-43.
DOI: 10.1016/j.jallcom.2003.10.067
Google Scholar
[3]
S. Gourdet, F. Montheillet, An experimental study of the recrystallization mechanism during hot deformation of aluminum, J. Mater. Sci. Eng. A. 283 2000 274-288.
DOI: 10.1016/s0921-5093(00)00733-4
Google Scholar
[4]
M J. Luton, C M. Sellars, Dynamic Recrystallization in Nickel and Nickel-Iron Alloys During High Temperature Deformation, J. Acta Metallurgica.. 17(8) (1969) 1033-1043.
DOI: 10.1016/0001-6160(69)90049-2
Google Scholar
[5]
Y. Wang, W Z. Shao, L. Zhen and X M. Zhang, Microstructure evolution during dynamic recrystallization of hot deformed superalloy 718, J. Mater. Sci. Eng. A. 486 (2008) 321-332.
DOI: 10.1016/j.msea.2007.09.008
Google Scholar
[6]
D F. Li, Q M. Guo, S L. Guo, H J. Peng and Z G. Wu, The microstructure and nucleation mechanisms of dynamic recrystallization in hot deformed Inconel 625 superalloy, J. Mater. Des. 32 (2011) 696-705.
DOI: 10.1016/j.matdes.2010.07.040
Google Scholar
[7]
Q. Guo, D. Li, S. Guo, H. Peng and J. Hu, The effect of deformation temperature on the microstructure evolution of Inconel 625 superalloy, J. Nuclear Materials. 414 (2011) 440-450.
DOI: 10.1016/j.jnucmat.2011.05.029
Google Scholar
[8]
A. Devaux, L. Nazé, R. Molins, A. Pineau, A. Organista, J Y. Guédou, J F. Uginet and P. Héritier, Gamma double prime precipitation kinetic in Alloy 718, J. Mater. Sci. Eng. A. 486 (2008) 117-122.
DOI: 10.1016/j.msea.2007.08.046
Google Scholar
[9]
P M. Magnanelli, N G. Jones, M C. Hardy and H J. Stone, The influence of Al:Nb ratio on the microstructure and mechanical response of quaternary Ni–Cr–Al–Nb alloys, J. Mater. Sci. Eng. A. 612 (2014) 179-186.
DOI: 10.1016/j.msea.2014.06.021
Google Scholar
[10]
M. Hillert, B. Sundman, A treatment of the solute drag on moving grain boundaries and phase interfaces in binary alloys", J. Acta Metallurgica. 24(8) (1976) 731-743.
DOI: 10.1016/0001-6160(76)90108-5
Google Scholar
[11]
N. Matougui, D. Piot, M L. Fares, F. Montheillet and S L. Semiatin, Influence of niobium solutes on the mechanical behaviour of nickel during hot working, J. Mater. Sci. Eng. A. 586 (2013) 350-357.
DOI: 10.1016/j.msea.2013.07.079
Google Scholar
[12]
N. Matougui, M.L. Fares, Influence of niobium solutes on the microstructural evolution of nickel during hot working, J. Mater. Res. Express. 6 (2019) 126538.
DOI: 10.1088/2053-1591/ab53f9
Google Scholar
[13]
Wen. Tu, Tresa M. Pollock, Grain scale straining processes during high temperature compression of a disk alloy, Superalloys 2008 TMS (The Minerals, Metals & Materials Society). (2008) 393-403.
DOI: 10.7449/2008/superalloys_2008_395_403
Google Scholar
[14]
C. Castan. F. Montheillet and A. Perlade, Dynamic recrystallization mechanisms of an Fe-8% -Al low density steel under hot rolling conditions, J. Scripta Materialia. 68(6) (2013) 360-364.
DOI: 10.1016/j.scriptamat.2012.07.037
Google Scholar
[15]
S. Gourdet, F. Montheillet, A model of continuous dynamic recrystallization; J. Acta Mater. 51 (2003) 2685.
DOI: 10.1016/s1359-6454(03)00078-8
Google Scholar
[16]
J P. Thomas, E. Bauchet, C. Dumont and F. Montheillet, EBSD Investigation and modeling of the microstructural evolutions of superalloy 718 during hot deformation, TMS (The Minerals, Metals & Materials Society). (2004) 959-968.
DOI: 10.7449/2004/superalloys_2004_959_968
Google Scholar
[17]
T. B. Tian, Evolution of microstructures during dynamic recrystallization and dynamic recovery in hot deformed Nimonic 80a; J. Mater. Sci. Eng. A. 367 (2004) 198-204.
DOI: 10.1016/j.msea.2003.10.226
Google Scholar
[18]
S. De la Chapelle, O. Castelnau, V Y. Lipenkov and P. Duval, Dynamic recrystallization and texture development in ice as revealed by the study of deep ice cores in Antarctica and Greenland. J. Geophysical Research. 103(B3) (1998) 5091-5105.
DOI: 10.1029/97jb02621
Google Scholar