[1]
US Department of Commerce N ESRL Global Monitoring Division - Global Greenhouse Gas Reference Network.
Google Scholar
[2]
Amouroux J, Siffert P, Pierre Massué J, Cavadias S, Trujillo B, Hashimoto K, Rutberg P, Dresvin S and Wang X 2014 Carbon dioxide: A new material for energy storage Prog. Nat. Sci. Mater. Int. 24 295–304.
DOI: 10.1016/j.pnsc.2014.06.006
Google Scholar
[3]
Schaaf T, Grünig J, Schuster M R, Rothenfluh T and Orth A 2014 Methanation of CO2 - storage of renewable energy in a gas distribution system Energy Sustain. Soc. 4 2.
DOI: 10.1186/s13705-014-0029-1
Google Scholar
[5]
Frontera P, Macario A, Ferraro M and Antonucci P 2017 Supported Catalysts for CO2 Methanation: A Review Catalysts 7 59.
DOI: 10.3390/catal7020059
Google Scholar
[6]
Gao J, Liu Q, Gu F, Liu B, Zhong Z and Su F 2015 Recent advances in methanation catalysts for the production of synthetic natural gas RSC Adv. 5 22759–76.
DOI: 10.1039/c4ra16114a
Google Scholar
[7]
Gao J, Wang Y, Ping Y, Hu D, Xu G, Gu F and Su F 2012 A thermodynamic analysis of methanation reactions of carbon oxides for the production of synthetic natural gas RSC Adv. 2 2358.
DOI: 10.1039/c2ra00632d
Google Scholar
[8]
Whitehead J C 2016 Plasma–catalysis: the known knowns, the known unknowns and the unknown unknowns J. Phys. Appl. Phys. 49 243001.
DOI: 10.1088/0022-3727/49/24/243001
Google Scholar
[9]
Mikhail M, Wang B, Jalain R, Cavadias S, Tatoulian M, Ognier S, Gálvez M E and Da Costa P 2019 Plasma-catalytic hybrid process for CO2 methanation: optimization of operation parameters React. Kinet. Mech. Catal. 126 629–43.
DOI: 10.1007/s11144-018-1508-8
Google Scholar
[10]
Nizio M, Albarazi A, Cavadias S, Amouroux J, Galvez M E and Da Costa P 2016 Hybrid plasma-catalytic methanation of CO2 at low temperature over ceria zirconia supported Ni catalysts Int. J. Hydrog. Energy 41 11584–92.
DOI: 10.1016/j.ijhydene.2016.02.020
Google Scholar
[11]
Wierzbicki D, Moreno M V, Ognier S, Motak M, Grzybek T, Da Costa P and Gálvez M E 2019 Ni-Fe layered double hydroxide derived catalysts for non-plasma and DBD plasma-assisted CO2 methanation Int. J. Hydrog. Energy S0360319919323456.
DOI: 10.1016/j.ijhydene.2019.06.095
Google Scholar
[12]
Pokrovski K, Jung K T and Bell A T 2001 Investigation of CO and CO 2 Adsorption on Tetragonal and Monoclinic Zirconia Langmuir 17 4297–303.
DOI: 10.1021/la001723z
Google Scholar
[13]
Kumar P, Sun Y and Idem R O 2007 Nickel-Based Ceria, Zirconia, and Ceria–Zirconia Catalytic Systems for Low-Temperature Carbon Dioxide Reforming of Methane Energy Fuels 21 3113–23.
DOI: 10.1021/ef7002409
Google Scholar
[14]
Yan Y, Dai Y, Yang Y and Lapkin A A 2018 Improved stability of Y 2 O 3 supported Ni catalysts for CO 2 methanation by precursor-determined metal-support interaction Appl. Catal. B Environ. 237 504–12.
DOI: 10.1016/j.apcatb.2018.06.021
Google Scholar
[15]
Italiano C, Llorca J, Pino L, Ferraro M, Antonucci V and Vita A 2020 CO and CO2 methanation over Ni catalysts supported on CeO2, Al2O3 and Y2O3 oxides Appl. Catal. B Environ. 264 118494.
DOI: 10.1016/j.apcatb.2019.118494
Google Scholar
[16]
Zhi G, Guo X, Wang Y, Jin G and Guo X 2011 Effect of La2O3 modification on the catalytic performance of Ni/SiC for methanation of carbon dioxide Catal. Commun. 16 56–9.
DOI: 10.1016/j.catcom.2011.08.037
Google Scholar
[17]
Charisiou N D, Siakavelas G, Papageridis K N, Baklavaridis A, Tzounis L, Goula G, Yentekakis I V, Polychronopoulou K and Goula M A 2017 The Effect of WO3 Modification of ZrO2 Support on the Ni-Catalyzed Dry Reforming of Biogas Reaction for Syngas Production Front. Environ. Sci. 5 66.
DOI: 10.3389/fenvs.2017.00066
Google Scholar
[18]
Pan Q, Peng J, Sun T, Wang S and Wang S 2014 Insight into the reaction route of CO2 methanation: Promotion effect of medium basic sites Catal. Commun. 45 74–8.
DOI: 10.1016/j.catcom.2013.10.034
Google Scholar