Investigation on the Improvement of Surface Quality by the Magnetic Plate-Assisted Magnetic Abrasive Finishing Process

Article Preview

Abstract:

The traditional magnetic abrasive finishing (MAF) process, the magnetic flux density at the bottom of the magnetic pole is unevenly distributed, resulting in poor uniformity of the finished surface. Therefore, it is proposed to improve the surface quality by attaching a magnetic plate at the bottom of the workpiece to improve the magnetic field distribution. It is confirmed by simulation that the magnetic field distribution at the bottom of the magnetic pole is effectively improved after the magnetic plate is attached. It is proved through experiments that the magnetic plate-assisted MAF process can obtain a smoother surface. The experimental results show that the surface roughness of the glass lens improves from 246 nm Ra to 3 nm Ra through the magnetic plate-assisted MAF process within 45min.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volume 1018)

Pages:

111-116

Citation:

Online since:

January 2021

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2021 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] N. K. Jain, V. K. Jain, S. Jha, Parametric optimization of advanced fine-finishing processes, Int. J. Adv. Manuf. Technol. 34 (2007) 1191–1213.

DOI: 10.1007/s00170-006-0682-4

Google Scholar

[2] A. Misra, P. M. Pandey, U. S. Dixit, A. Roy, et al. Multi-objective optimization of ultrasonic-assisted magnetic abrasive finishing process, Int. J. Adv. Manuf. Technol. 101 (2019) 1661–1670.

DOI: 10.1007/s00170-018-3060-0

Google Scholar

[3] T. W. Kim, J. S. Kwak, A study on deburring of magnesium alloy plate by magnetic abrasive polishing, Int. J. Precis. Eng. Man. 11(2) (2010) 189-194.

DOI: 10.1007/s12541-010-0021-4

Google Scholar

[4] K. Tsuchiya, Y. Shimizu, K. Sakaki, M. Sato, Polislling Mechanism of Magnetic Abrasion, J. Japan Inst. Metals (Japan), 57(11) (1993) 1333-1338.

DOI: 10.2320/jinstmet1952.57.11_1333

Google Scholar

[5] P. Jayakumar, S. Ray, V. Radhakrishnan, Optimising progress parameters of magnetic abrasive machining to reduce the surface roughness value, Journal of spacecraft technology, 7(1) (1997) 58-64.

Google Scholar

[6] T. Shinmura, K. Takazawa, E. Hatano, Study on magnetic abrasive process -Application to plane finishing-, Bull. Jpn. Soc. Precis. Eng. 19(4) (1985) 289-294.

Google Scholar

[7] T. Shinmura, K. Takazawa, Study on magnetic abrasive finishing -characteristics of finished surface-, Bull. Jpn. Soc. Precis. Eng. 53(11) (1987)1791-1793.

Google Scholar

[8] J. Kang, A. George, H. Yamaguchi, High-speed Internal Finishing of Capillary Tubes by Magnetic Abrasive Finishing, Procedia CIRP, 1 (2012) 414-418.

DOI: 10.1016/j.procir.2012.04.074

Google Scholar

[9] R. S. Mulik, P.M. Pandey, Ultrasonic assisted magnetic abrasive finishing of hardened AISI 52100 steel using unbonded SiC abrasives, Int. J. Refract. Met. Hard Mater. 29(1) (2011) 68–77.

DOI: 10.1016/j.ijrmhm.2010.08.002

Google Scholar

[10] V. K. Jain, P. Kumar, P. K. Behera, S. C. Jayaswal, Effect of working gap and circumferential speed on the performance of magnetic abrasive finishing process, Wear 250(1-12) (2001) 384-390.

DOI: 10.1016/s0043-1648(01)00642-1

Google Scholar

[11] A. Y. Jiao, H. J. Quan, Z. Z. Li, Y. H. Zou, Study on improving the trajectory to elevate the surface quality of plane magnetic abrasive finishing, Int. J. Adv. Manuf. Technol. 80(9-12) (2015) 1613-1623.

DOI: 10.1007/s00170-015-7136-9

Google Scholar

[12] Y. H. Zou, A. Y. Jiao, T. Aizawa, Study on Plane Magnetic Abrasive Finishing Process - Experimental and Theoretical Analysis on Polishing Trajectory -, Advanced Materials Research 126 (2010) 1023-1028.

DOI: 10.4028/www.scientific.net/amr.126-128.1023

Google Scholar

[13] Y. H. Zou, T. Shinmura, F. Wang. Study on a Magnetic Deburring Method by the Application of the Plane Magnetic Abrasive Machining Process, Advanced materials research 76 (2009) 276-281.

DOI: 10.4028/www.scientific.net/amr.76-78.276

Google Scholar