Recent Progress on the Positron Annihilation Experiments on Irradiated Ferritic/Martensitic Steels Containing Helium

Article Preview

Abstract:

The well-known and often acceptable radiation tolerance of ferritic/martensitic (f/m) steels can be severely diminished when neutron irradiation is accompanied by the production of helium. The presence of helium in the irradiated materials changes the kinetics of the nucleation, recombination, and clustering of the radiation-induced defects. High production rates of helium may lead to a non-negligible volumetric bubble swelling at relatively low temperatures. Extrapolation of the knowledge gained from neutron irradiation experiments to fusion or spallation environments is additionally complicated due to the unknown and comprehensive effects of dpa rate, temperature, the presence of sinks in the crystal lattice and others. To improve the understanding of the microstructure and irradiation parameters effects, close attention must be paid to the early stages of the radiation damage. It is expected that the pre-existing vacancy-type defects, attributed to lattice distortion at the grain/subgrain boundaries and oxide-matrix interfaces, are effective sinks for primary defects and helium, i.e. they control the formation and growth of helium-vacancy agglomerations. This early-stage radiation damage, however, cannot be captured by conventional transmission electron microscopy, and thus other experimental techniques are called for. One of the most perspective experimental approaches to investigate small vacancy-type defects, with a high sensitivity to confined helium, is to utilize positron annihilation spectroscopy (PAS). In particular, two spectroscopy techniques, positron annihilation lifetime spectroscopy (PALS) and Doppler broadening spectroscopy (DBS) of the annihilation line, can be beneficially used for the characterization of helium-vacancy clusters. This paper reviews the recent positron annihilation spectroscopy characterization of various irradiation experiments involving helium. Mainly two types of irradiation experiments are addressed, helium implantation and spallation neutron source irradiation experiments. Discussion is aimed at the potential of PAS in the early-stage formation of helium bubbles and the investigation of the effects of irradiation parameters in defect production and accumulation.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volume 1024)

Pages:

1-12

Citation:

Online since:

March 2021

Authors:

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2021 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] S.J. Zinkle, J.L. Boutard, D.T. Hoelzer, A. Kimura, R. Lindau, G.R. Odette, M. Rieth, L. Tan, H. Tanigawa, Nucl. Fusion. 57 (2017) 92005 (17pp).

DOI: 10.1088/1741-4326/57/9/092005

Google Scholar

[2] F.A. Garner et al., J. Nucl. Mater 276 (2000) 123-142.

Google Scholar

[3] X. Wang et al., Scripta Materialia 112 (2016) 9–14.

Google Scholar

[4] D.S. Gelles, J. Nucl. Mater 233-237 (1996) 293-298.

Google Scholar

[5] B.H. Sencer, J.R. Kennedy, J.J. Cole, S.A. Maloy, F.A. Garner, J. Nucl. Mater. 393 (2009) 235.

Google Scholar

[6] Y.E. Kupriiyanova et al., J. Nucl. Mater 468 (2016) 264-273.

Google Scholar

[7] W.G. Johnston, T. Lauritzen, J.H. Rosolowski, A.M. Turkalo, in: Effects of Radiation on Materials, 11th Conference, ASTM STP 782 (1982) 809-823.

Google Scholar

[8] F.A. Garner, J. Nucl. Mater. 117 (1983) p.177.

Google Scholar

[9] M. Klimenkov, A. Möslang, E. Materna-Morris, J. Nucl. Mater 453 (2014) 54–59.

Google Scholar

[10] G. Was, Challenges to the use of ion irradiation for emulating reactor irradiation. Journal of Materials Research, 30(9), (2015) 1158-1182.

DOI: 10.1557/jmr.2015.73

Google Scholar

[11] S. E. Donnelly, The density and pressure of helium in bubbles in implanted metals: A critical review, Radiation Effects, 90:1-2 (1985) 1-47.

DOI: 10.1080/00337578508222514

Google Scholar

[12] K. Farrell, P. J. Maziasz, E. H. Lee and L. K. Mansur, Radiat. Eff. 78 1-4 (1983) 277-295.

Google Scholar

[13] H. Trinkaus, Radiat. Eff. 78 (1983) 189–211.

Google Scholar

[14] N.M. Ghoniem, M.L. Takata, J. Nucl. Mater. 105 (1982) 276–292.

Google Scholar

[15] H. Ullmaier, Radiat. Radiat. Eff. 78 (1983) 1–10.

Google Scholar

[16] L.K. Mansur, W.A. Coghlan, J. Nucl. Mater. 119 (1983) 1–25.

Google Scholar

[17] S. Sharafat, N.M. Ghoniem, Radiat. Eff. Defects Solids. 113 (1990) 331–358.

Google Scholar

[18] H. Trinkaus, B.N. Singh, J. Nucl. Mater 323 (2003) 229-242].

Google Scholar

[19] Ch. Fu, F. Willaime, Phys. Rev. B. 72 (2005) 064117-3.

Google Scholar

[20] C. Dethloff, Modeling of Helium Bubble Nucleation and Growth in Neutron Irradiated RAFM Steels, KIT scientific publishing, (2012).

DOI: 10.1016/j.jnucmat.2011.12.025

Google Scholar

[21] K. Farrell, Radiat. Eff. 53 (1980) 175-194.

Google Scholar

[22] T. Troev, E. Popov, P. Staikov, N. Nankov, Phys. Status Solidi C 6 (11) (2009) 2373–2375.

DOI: 10.1002/pssc.200982129

Google Scholar

[23] Z. Tong, Y. Dai, J. Nucl. Mater 398 (2010) 43-48.

Google Scholar

[24] R.E. Stoller, G.R. Odette, J. Nucl. Mater 131 (1985) 118-125.

Google Scholar

[25] C. Dethloff, E. Gaganidze, V.V. Svetukhin, J. Aktaa, J. Nucl. Mater 426 (2012) 287-297.

Google Scholar

[26] G.R. Odette, R.E. Stoller, J. Nucl. Mater 122 (1984) 514-519.

Google Scholar

[27] X. Jia, Y. Dai, J. Nucl. Mater 356 (2006) 105-111.

Google Scholar

[28] P.B. Johnson, R.W. Thomson, K. Reader, J. Nucl. Mater 273 (1999) 117-129.

Google Scholar

[29] Y. Dai, G.R. Odette, T. Yamamoto, The Effects of Helium in Irradiated Structural Alloys, Elsevier Inc., 2012, https://doi.org/10.1016/B978-0-08-056033- 5.00006-9.

Google Scholar

[30] V. Krsjak, J. Kuriplach, T. Shen, V. Sabelova, K. Sato, Y. Dai, J. Nucl. Mater. 456 (2015) 382-388.

DOI: 10.1016/j.jnucmat.2014.10.014

Google Scholar

[31] M. Hernández-Mayoral, M. J. Caturla, Microstructure evolution of irradiated structural materials in nuclear power plants, Understanding and Mitigating Ageing in Nuclear Power Plants Materials and Operational Aspects of Plant Life Management (Plim), Woodhead Publishing Series in Energy (2010) 189-235.

DOI: 10.1533/9781845699956.2.189

Google Scholar

[32] P. Hautojärvi, C. Corbel, in: Positron Solid State Physics, Proceedings of the International School of Physics, Enrico Fermi, Course XX, Varenna, (1993).

Google Scholar

[33] V. Krsjak, J. Kuriplach, C. Vieh, L. Peng, Y. Dai, J. Nucl. Mater. 504 (2018) 277–280.

Google Scholar

[34] N. de Diego et al. / Acta Materialia 53 (2005) 163–172.

Google Scholar

[35] G. Brauer, M. Sob and J. Kocik, Positron annihilation study of radiation damage in neutron irradiated reactor pressure vessel steels, Report ZfK-703 (April 1990), Zentralinstitut fiir Kernforschung Rossendorf.

Google Scholar

[36] M.J. Puska, R.M. Nieminen, J. Phys. F: Met. Phys. 13 (1983) 333.

Google Scholar

[37] A.P. Seitsonen, M.J. Puska, R.M. Nieminen, Phys. Rev. B 51 (1995) 14057.

Google Scholar

[38] J. Kuriplach, A.L. Morales, C. Dauwe, D. Segers, M. Sob, Phys. Rev. B 58 (1998) 10475.

Google Scholar

[39] V. Sabelova V. Krsjak, J. Kuriplach, M. Petriska, V. Slugen, J. Simeg Veternikova, J. Nucl. Mater. 450 (2014) 54–58.

Google Scholar

[40] V. Sabelova V. Krsjak, J. Kuriplach, Y. Dai, V. Slugen, J. Nucl. Mater. 458 (2015) 350–354.

Google Scholar

[41] T. Troev, E. Popov, P. Staikov, N. Nankov, T. Yoshiie, Nucl. Instrum. MethodsPhys. Res. Sect. B Beam Interact. Mater. Atoms 267 (2009) 535-541.

DOI: 10.1016/j.nimb.2008.11.045

Google Scholar

[42] R.E. Stoller, Yu.N. Osetsky, J. Nucl. Mater 455 (2014) 258–262.

Google Scholar

[43] Y. Dai, V. Krsjak, V. Kuksenko, R. Schäublin, J. Nucl. Mater. 511 (2018) 508–522.

Google Scholar

[44] C. Vieh, Hardening induced by radiation damage and helium in structural materials, These No 6490, EPFL Lausanne, (2015).

Google Scholar

[45] Y. Wu G.R. Odette T. Yamamoto J. Ciston P. Hosemann, An Electron Energy Loss Spectroscopy Study of Helium Bubbles in Nanostructured Ferritic Alloys, Semiannual Progress Report DOE/ER-0313/54.

Google Scholar

[46] Y.N. Osetsky, R.E. Stoller, J. Nucl. Mater. 465 (2015) 448-454.

Google Scholar

[47] V. Krsjak, C. Vieh, and Y. Dai, Microstructural aspects of helium bubbles formation in ferritic martensitic steels, AIP Conference Proceedings 2182, 050026 (2019); https://doi.org/10.1063/1.5135869.

DOI: 10.1063/1.5135869

Google Scholar

[48] K. Morishita, R. Sugano, B.D. Wirth, T. Diaz de la Rubia, Nucl. Instruments Methods Phys. Res. Sect. B Beam Interact. with Mater. Atoms. 202 (2003) 76–81.

DOI: 10.1016/s0168-583x(02)01832-3

Google Scholar

[49] K. Wang, Embrittlement induced by the synergistic effects of radiation damage and helium in structural steels, These No 6824, EPFL Lausanne, (2015).

Google Scholar

[50] V. Krsjak, J. Degmova, S. Sojak, V. Slugen et al., J. Nucl. Mater 499 (2018) 38-46.

Google Scholar

[51] V. Krsjak, J. Degmova, T. Shen, E. Korpas, S. Sojak, P. Noga, B. Li, V. Slugen, F. Garner, Positron annihilation study of helium bubble nucleation in oxide dispersion strengthened ferritic steels, Unpublished manuscript.

DOI: 10.1016/j.jmst.2021.08.004

Google Scholar