Interaction of Liquid Lead Bismuth and Materials in Spallation Target

Article Preview

Abstract:

Material choices for liquid lead bismuth spallation target are some of austenitic stainless steel, ferrite martensitic steel and cold-worked austenitic stainless steel. In order to ensure materials resistance to irradiation and corrosion as well as compatibility with lead bismuth, it is appropriate to lower the incident proton current density and the process temperature, in which temperature range engineering design can control to work, especially in ADS (Accelerator-Driven nuclear transmutation System) concept. The lower limit temperature is determined from the physical melting temperature and the engineering efficiency of the steam generator involved in process control. The material related issues for liquid lead bismuth are mass loss by impinging secondary flow, wettability at the device interface for ultrasonic waves application, detachable control of the slag in the flowing system, stabilized electrical resistance between the material and the liquid lead bismuth interface. Electromagnetic fluid analyses show how flow rate relates electrical resistivity of flow channel material.

You might also be interested in these eBooks

Info:

* - Corresponding Author

[1] K. TSUJIMOTO, H. OIGAWA, K. KIKUCHI, Y. KURATA, M. MIZUMOTO, T. SASA, S. SAITO, K. NISHIHARA, M. UMENO, H. TAKEI, FEASIBILITY OF LEAD-BISMUTH COOLED ACCELERATOR-DRIVEN SYSTEM FOR MINOR-ACTINIDE TRANSMUTATION,, NUCLEAR TECHNOLOGY, VOL, 161, MAR. 2008, pp.315-328.

DOI: 10.13182/nt08-a3929

Google Scholar

[2] Hiroyuki Oigawa, Kazufumi Tsujimoto, Kenji Nishihara, Takanori Sugawara, Yuji Kurata, Hayanori Takei, Shigeru Saito, Toshinobu Sasa, Hironari Obayashi, Role of ADS in the back-end of the fuel cycle strategies and a ssociated design activities: The case of Japan,, Journal of Nuclear Materials, 415, pp.229-236, (2011).

DOI: 10.1016/j.jnucmat.2011.04.032

Google Scholar

[3] Takanori Sugawara, Yuta Eguchi, Horonori Obayashi, Hiroko Iwamoto, Kazufumi Tsujimoto, Nuclear engineering and design 331, 2018, pp.11-23.

Google Scholar

[4] P. N. Martynov, Y. I. Orlov, A. D. Efanov, V. M. Troiynov, A. E. Rusanov, O. V. Lavrova, Technology of lead-bismuth coolants for nuclear reactors,, Proc. of the ISTC-TITech Japan Workshop on Nuclear Reactor Technologies in Russia/CIS,pp.80-105, (2001).

Google Scholar

[5] H. J. T. Ellingham, Reducibility of Oxides and Sulphides, J. Soc. Chem Ind. Trans., 63, pp.125-133, (1944).

Google Scholar

[6] Kenji KIKUCHI, Shigeru SAITO, Yuji KURATA, Masatoshi FUTAKAWA, Toshinobu SASA, Hiroyuki OIGAWA, Eiichi WAKAI, Makoto UMENO, Hiroshi MIZUBAYASHI, Kuniaki MIURA, Lead-Bismuth Eutectic Compatibility with Materials in the Concept of Spallation Target for ADS, JSME International Journal, Series B, Vol. 47, No. 2, 2004, pp.332-339.

DOI: 10.1299/jsmeb.47.332

Google Scholar

[7] K. Kikuchi, S. Saito, D. Hamaguchi, M. Tezuka, Ni-rich precipitates in a lead bismuth eutectic loop, Journal of Nuclear Materials 398, 2010, pp.104-108.

DOI: 10.1016/j.jnucmat.2009.10.018

Google Scholar

[8] G. S. Bauer, M. Salvatores, G. Heusener, MEGAPIE, a 1MW Pilot Experiment for a Liquid Mertal Spallation Target, JAERI-Conf. 2001-002, 15th ICANS XV, November 6-9, 2000, Tsukuba, pp.1146-1162.

DOI: 10.1016/s0022-3115(01)00561-x

Google Scholar

[9] Yamaki, E., Kikuchi, K., 2010. A stability of oxide scales formed in LBE on HCM12A to external loading. Journal of Nuclear Materials 398, p.153–159.

DOI: 10.1016/j.jnucmat.2009.10.026

Google Scholar

[10] Kikuchi, K., Kamata, K., Ono, M., Kitano, T., Hayashi, K., Oigawa, H., 2008. Corrosion rate of parent and weld materials of F82H and JPCA steels under LBE flow with active oxygen control at 450 and 500oC. Journal of Nuclear Materials 377, p.232–242.

DOI: 10.1016/j.jnucmat.2008.02.047

Google Scholar

[11] Shigeru Saito, Kenji Kikuchi, Dai Hamaguchi, Kouji Usami, Shinya Endo, Katsuto Ono, Hiroki Matsui, Masayoshi Kawai, Yong Dai, Journal of Nuclear Materials 431 (2012) p.44–51.

DOI: 10.1016/j.jnucmat.2011.11.028

Google Scholar

[12] R.L. Klueh and M.P. Tanaka, Steels for Fusion Reactor Applications, Journal of Metals, Vol.37, No.10, 1985, P.16-23.

Google Scholar

[13] Abu Khalid Rivai, Shigeru Saito, Masao Tezuka, Chiaki Kato, Kenji Kikuchi, Journal of Nuclear Materials 431 (2012) 97–104.

Google Scholar

[14] D. Caplan, G.I. Sproule, R.J. Hussey, Corros. Sci. 10 (1970) p.9.

Google Scholar

[15] J.C. Langevoort, T. Fransen, P.J. Gellings, On the Influence of Cold Eork on the Oxidation Behavior of Some Austenitic Stainless Steels: High Temperature Oxidation, Oxidation of Metals, Vol.21, Nos.5/5 1984, p.271.

DOI: 10.1007/bf00656836

Google Scholar

[16] Ken-ichi HAYASHI, Mikinori ONO, Kenji KIKUCHI, Noriya TOKUNAGA, Teruaki KITANO and Hiroyuki OIGAWA, Transactions of the Atomic Energy Society of Japan, Vol.7, No.1, 2008, pp.44-57.

DOI: 10.3327/taesj.j07.002

Google Scholar

[17] Gene Dannen, The Einstein-Szilard Refrigerators, Scientific American, January 1997, p.95.

DOI: 10.1038/scientificamerican0197-90

Google Scholar

[18] Information on https://mdx.plm.automation.siemens.com/.

Google Scholar

[19] Information on https://www.ssil.co.jp/product/EMSolution/ja/about/.

Google Scholar

[20] G. Müller, G. Schumacher, F. Zimmermann, Investigation on oxygen controlled liquid lead corrosion of surface treated steels, Journal of Nuclear Materials 278, 2000, pp.85-95.

DOI: 10.1016/s0022-3115(99)00211-1

Google Scholar