Computational Study of Solute Effects in Tungsten under Irradiation

Article Preview

Abstract:

Tungsten (W) is suitable for solid targets of spallation neutron source due to its high neutron yield. The prediction of radiation effects of W is, therefore, of importance; especially, the influence of solute elements are complex and are not clearly known to date. We discuss here the solute effects using the first principles and kinetic Monte Carlo (KMC) calculations and show that Re and Os, which are nuclear transmutation products of W, can largely change the stability and mobility of radiation defects. Such influences of the solute elements seem to explain the unsolved mechanism of the microstructural evolution of W-based materials under irradiation.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volume 1024)

Pages:

87-94

Citation:

Online since:

March 2021

Authors:

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2021 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] G.J. Russell, Spallation physics -- Overview, ICANS-XI International Collaboration on Advanced Neutron Sources KEK. Tsukuba, October (1990) 291-299.

Google Scholar

[2] M. Kawai, M. Furusaka, K. Kikuchi, H. Kurishita, R. Watanabe, J.-F. Li, K. Sugimoto, T. Yamamura, Y. Hiraoka, K. Abe, A. Hasegawa, M. Yoshiie, H. Takenaka, K. Mishima, Y. Kiyanagi, T. Tanabe, N. Yoshida, T. Igarashi, R&D of A MW-class solid-target for a spallation neutron source, Journal of Nuclear Materials 318 (2003) 38-55.

DOI: 10.1016/s0022-3115(03)00114-4

Google Scholar

[3] H. Ullmaier, F. Carsughi, Radiation damage problems in high power spallation neutron sources, Nuclear Instruments and Methods in Physics Research B 101 (1995) 406-421.

DOI: 10.1016/0168-583x(95)00590-0

Google Scholar

[4] S.A. Maloy, M.R. James, W. Sommer, G.J. Willcutt, M. Lopez, T.J. Romero, The effect of 800 MeV Proton Irradiation on the mechanical properties of tungsten, Materials Transaction 43 (2002) 633-637.

DOI: 10.2320/matertrans.43.633

Google Scholar

[5] J.R. Stephens, W.R. Witzke, Alloy softening in group VIA metals alloyed with rhenium, J. Less-Common Metals, 23 (1971) 325-342.

DOI: 10.1016/0022-5088(71)90043-9

Google Scholar

[6] J. Matolich, H. Nahm, J. Moteff, Swelling in neutron irradiated tungsten and tungsten -25 percent rhenium, Scripta Metallurgica 8 (1974) 837-841.

DOI: 10.1016/0036-9748(74)90304-4

Google Scholar

[7] T. Noda, M. Fujita, M. Okada, Transmutation and induced radioactivity of W in the armor and first wall of fusion reactors, Journal of Nuclear Materials 258 (1998) 934–939.

DOI: 10.1016/s0022-3115(98)00088-9

Google Scholar

[8] G.A. Cottrell, R. Pampin, N.P. Tayler, Transmutation and phase stability of tungsten armor in fusion power plants, Fusion Science and Technology 50 (2006) 89–98.

DOI: 10.13182/fst06-a1224

Google Scholar

[9] B. Ralph, D.G. Brandon, A field ion microscope study of some tungsten-rhenium alloys, Philosophical Magazine 8 (1963) 919–934.

DOI: 10.1080/14786436308214452

Google Scholar

[10] A. Taylor, B.J. Kagle, N.J. Doyle, The constitution diagram of the tungsten-osmium binary system, Journal of the Less Common Metals 3 (1961) 333–347.

DOI: 10.1016/0022-5088(61)90025-x

Google Scholar

[11] V. Sikka, J. Moteff, Identification of a-Mn crystal structure in neutron irradiated W-Re alloy, Metall. Materials Transaction B 5 (1974) 1514-1517.

DOI: 10.1007/bf02646643

Google Scholar

[12] R.K. Williams, F.W. Wiffen, J. Bentley, J.O. Stiegler, Irradiation induced precipitation in tungsten based, W-Re alloys, Metallurgical Transactions A 14(3) (1983) 655–666.

DOI: 10.1007/bf02643781

Google Scholar

[13] R. Herschitz, D.N. Seidman, Radiation-induced precipitation in fast-neutron irradiated tungsten-rhenium alloys: An atom-probe field-ion microscope study, Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms 7 (1985) 137–142.

DOI: 10.1016/0168-583x(85)90544-0

Google Scholar

[14] Y. Nemoto, A. Hasegawa, M. Satou, K. Abe, Microstructural development of neutron irradiated W–Re alloys, Journal of Nuclear Materials 283 (2000) 1144–1147.

DOI: 10.1016/s0022-3115(00)00290-7

Google Scholar

[15] A. Hasegawa, T. Tanno, S. Nogami, M. Satou, Property change mechanism in tungsten under neutron irradiation in various reactors, Journal of Nuclear Materials 417 (2011) 491–494.

DOI: 10.1016/j.jnucmat.2010.12.114

Google Scholar

[16] D.E.J. Armstrong, P.D. Edmondson, S.G. Roberts, Effects of sequential tungsten and helium ion implantation on nano-indentation hardness of tungsten, Applied Physics Letters 102 (2013) 251901.

DOI: 10.1063/1.4811825

Google Scholar

[17] J.C. Crivello, J.M. Joubert, First principles calculations of the s and χ phases in the Mo–Re and W–Re systemsJournal of Physics: Condensed Matter 22 (2010) 035402.

DOI: 10.1088/0953-8984/22/3/035402

Google Scholar

[18] M. Fukuda, T. Tanno, S. Nogami, A. Hasegawa, Effects of Re content and fabrication process on microstructural changes and hardening in neutron irradiated tungsten, Materials Transactions 53 (2012) 2145–2150.

DOI: 10.2320/matertrans.mbw201110

Google Scholar

[19] G. Martin, Contribution of dissipative processes to radiation-induced solid-solution instability, Physical Review B 21 (1980) 2122–2129.

DOI: 10.1103/physrevb.21.2122

Google Scholar

[20] R. Cauvin, G. Martin, Solid solutions under irradiation. I. A model for radiation-induced metastability, Physical Review B 23 (1981) 3322–3332.

DOI: 10.1103/physrevb.23.3322

Google Scholar

[21] P. Krasnochtchekov, R.S. Averback, P. Bellon, Precipitate stability and morphology in irradiation envoronments, JOM 59 (2007) 46–50.

DOI: 10.1007/s11837-007-0054-z

Google Scholar

[22] K. Wilson, M. Baskes, D. Seidman, An in situ field-ion microscope study of the recovery behavior of ion-irradiated tungsten and tungsten alloys, Acta Metall. 28 (1980) 89–102.

DOI: 10.1016/0001-6160(80)90043-7

Google Scholar

[23] G. Kresse, D. Joubert, Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. From ultrasoft pseudopotentials to the projector augmented-wave method. Physical Review B 59 (1999) 1758–1775.

DOI: 10.1103/physrevb.59.1758

Google Scholar

[24] G. Kresse, J. Furthmu¨ller, Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set, Physical Review B 54 (1996) 11169–11186.

DOI: 10.1103/physrevb.54.11169

Google Scholar

[25] J.P. Perdew, K. Burke, M. Ernzerhof, Generalized gradient approximation made simple, Physical Review Letters 77 (1996) 3865.

DOI: 10.1103/physrevlett.77.3865

Google Scholar

[26] H.J. Monkhorst, J.D. Pack, Special points for Brillouin-zone integrations, Physical Review B 13 (1976) 5188–5192.

DOI: 10.1103/physrevb.13.5188

Google Scholar

[27] T. Suzudo, M. Yamaguchi, A. Hasegawa, Stability and mobility of rhenium and osmium in tungsten: first principles study, Modelling and Simulation in Materials Science and Engineering 22 (2014) 075006.

DOI: 10.1088/0965-0393/22/7/075006

Google Scholar

[28] L. Gharaee, P. Erhart, A first-principles investigation of interstitial defects in dilute tungsten alloys, Journal of Nuclear Materials 467 (2015) 448–456.

DOI: 10.1016/j.jnucmat.2015.09.003

Google Scholar

[29] W. Setyawan G. Nandipati, K.J. Roche, H.L. Heinisch, B.D. Wirth, R.J. Kurtz, Displacement cascades and defects annealing in tungsten, Part I: Defect database from molecular dynamics simulations, Journal of Nuclear Materials 462 (2015) 329–337.

DOI: 10.1016/j.jnucmat.2014.12.056

Google Scholar

[30] T. Suzudo, M. Yamaguchi, A. Hasegawa, Migration of rhenium and osmium interstitials in tungsten, Journal of Nuclear Materials 467 (2015) 418–423.

DOI: 10.1016/j.jnucmat.2015.05.051

Google Scholar

[31] J. Marian, C.S. Becquart, C. Domain, S.L. Dudarev, M.R. Gilbert, R.J. Kurtz, D.R. Mason, K. Nordlund, A.E. Sand, L.L. Snead, T. Suzudo, B.D. Wirth, Recent advances in modeling and simulation of the exposure and response of tungsten to fusion energy conditions, Nuclear Fusion 57 (2017) 092008.

DOI: 10.1088/1741-4326/aa5e8d

Google Scholar

[32] T. Suzudo, A. Hasegawa, Suppression of radiation-induced point defects by rhenium and osmium interstitials in tungsten, Scientific Reports, 6 (2016) 36738.

DOI: 10.1038/srep36738

Google Scholar

[33] S.P Fitzgerald, D. Nguyen-Manh, Peierls potential for crowdions in the BCC transition metals, Physical Review Letters 101 (2008) 115504.

DOI: 10.1103/physrevlett.101.115504

Google Scholar

[34] C.-H. Huang, L. Gharaee, Y. Zhao, P. Erhart, J. Marian, Mechanism of nucleation and incipient growth of re clusters in irradiated W-Re alloys from kinetic Monte Carlo simulations, Physical Review B 96 (2017) 094108.

DOI: 10.1103/physrevb.96.094108

Google Scholar

[35] T. Suzudo, T. Tsuru, A. Hasegawa, First-principles study of solvent-solute mixed-dumbbells in body-centered-cubic tungsten crystals, Journal of Nuclear Materials 505 (2018) 15-21.

DOI: 10.1016/j.jnucmat.2018.03.052

Google Scholar

[36] T. Toyama, K. Ami, K. Inoue, Y. Nagai, K. Sato, Q. Xu, Y. Hatano, Deuterium trapping at vacancy clusters in electron/neutron-irradiated tungsten studied by positron annihilation spectroscopy, Journal of Nuclear Materials, 499 (2018) 464-470.

DOI: 10.1016/j.jnucmat.2017.11.022

Google Scholar