[1]
G.J. Russell, Spallation physics -- Overview, ICANS-XI International Collaboration on Advanced Neutron Sources KEK. Tsukuba, October (1990) 291-299.
Google Scholar
[2]
M. Kawai, M. Furusaka, K. Kikuchi, H. Kurishita, R. Watanabe, J.-F. Li, K. Sugimoto, T. Yamamura, Y. Hiraoka, K. Abe, A. Hasegawa, M. Yoshiie, H. Takenaka, K. Mishima, Y. Kiyanagi, T. Tanabe, N. Yoshida, T. Igarashi, R&D of A MW-class solid-target for a spallation neutron source, Journal of Nuclear Materials 318 (2003) 38-55.
DOI: 10.1016/s0022-3115(03)00114-4
Google Scholar
[3]
H. Ullmaier, F. Carsughi, Radiation damage problems in high power spallation neutron sources, Nuclear Instruments and Methods in Physics Research B 101 (1995) 406-421.
DOI: 10.1016/0168-583x(95)00590-0
Google Scholar
[4]
S.A. Maloy, M.R. James, W. Sommer, G.J. Willcutt, M. Lopez, T.J. Romero, The effect of 800 MeV Proton Irradiation on the mechanical properties of tungsten, Materials Transaction 43 (2002) 633-637.
DOI: 10.2320/matertrans.43.633
Google Scholar
[5]
J.R. Stephens, W.R. Witzke, Alloy softening in group VIA metals alloyed with rhenium, J. Less-Common Metals, 23 (1971) 325-342.
DOI: 10.1016/0022-5088(71)90043-9
Google Scholar
[6]
J. Matolich, H. Nahm, J. Moteff, Swelling in neutron irradiated tungsten and tungsten -25 percent rhenium, Scripta Metallurgica 8 (1974) 837-841.
DOI: 10.1016/0036-9748(74)90304-4
Google Scholar
[7]
T. Noda, M. Fujita, M. Okada, Transmutation and induced radioactivity of W in the armor and first wall of fusion reactors, Journal of Nuclear Materials 258 (1998) 934–939.
DOI: 10.1016/s0022-3115(98)00088-9
Google Scholar
[8]
G.A. Cottrell, R. Pampin, N.P. Tayler, Transmutation and phase stability of tungsten armor in fusion power plants, Fusion Science and Technology 50 (2006) 89–98.
DOI: 10.13182/fst06-a1224
Google Scholar
[9]
B. Ralph, D.G. Brandon, A field ion microscope study of some tungsten-rhenium alloys, Philosophical Magazine 8 (1963) 919–934.
DOI: 10.1080/14786436308214452
Google Scholar
[10]
A. Taylor, B.J. Kagle, N.J. Doyle, The constitution diagram of the tungsten-osmium binary system, Journal of the Less Common Metals 3 (1961) 333–347.
DOI: 10.1016/0022-5088(61)90025-x
Google Scholar
[11]
V. Sikka, J. Moteff, Identification of a-Mn crystal structure in neutron irradiated W-Re alloy, Metall. Materials Transaction B 5 (1974) 1514-1517.
DOI: 10.1007/bf02646643
Google Scholar
[12]
R.K. Williams, F.W. Wiffen, J. Bentley, J.O. Stiegler, Irradiation induced precipitation in tungsten based, W-Re alloys, Metallurgical Transactions A 14(3) (1983) 655–666.
DOI: 10.1007/bf02643781
Google Scholar
[13]
R. Herschitz, D.N. Seidman, Radiation-induced precipitation in fast-neutron irradiated tungsten-rhenium alloys: An atom-probe field-ion microscope study, Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms 7 (1985) 137–142.
DOI: 10.1016/0168-583x(85)90544-0
Google Scholar
[14]
Y. Nemoto, A. Hasegawa, M. Satou, K. Abe, Microstructural development of neutron irradiated W–Re alloys, Journal of Nuclear Materials 283 (2000) 1144–1147.
DOI: 10.1016/s0022-3115(00)00290-7
Google Scholar
[15]
A. Hasegawa, T. Tanno, S. Nogami, M. Satou, Property change mechanism in tungsten under neutron irradiation in various reactors, Journal of Nuclear Materials 417 (2011) 491–494.
DOI: 10.1016/j.jnucmat.2010.12.114
Google Scholar
[16]
D.E.J. Armstrong, P.D. Edmondson, S.G. Roberts, Effects of sequential tungsten and helium ion implantation on nano-indentation hardness of tungsten, Applied Physics Letters 102 (2013) 251901.
DOI: 10.1063/1.4811825
Google Scholar
[17]
J.C. Crivello, J.M. Joubert, First principles calculations of the s and χ phases in the Mo–Re and W–Re systemsJournal of Physics: Condensed Matter 22 (2010) 035402.
DOI: 10.1088/0953-8984/22/3/035402
Google Scholar
[18]
M. Fukuda, T. Tanno, S. Nogami, A. Hasegawa, Effects of Re content and fabrication process on microstructural changes and hardening in neutron irradiated tungsten, Materials Transactions 53 (2012) 2145–2150.
DOI: 10.2320/matertrans.mbw201110
Google Scholar
[19]
G. Martin, Contribution of dissipative processes to radiation-induced solid-solution instability, Physical Review B 21 (1980) 2122–2129.
DOI: 10.1103/physrevb.21.2122
Google Scholar
[20]
R. Cauvin, G. Martin, Solid solutions under irradiation. I. A model for radiation-induced metastability, Physical Review B 23 (1981) 3322–3332.
DOI: 10.1103/physrevb.23.3322
Google Scholar
[21]
P. Krasnochtchekov, R.S. Averback, P. Bellon, Precipitate stability and morphology in irradiation envoronments, JOM 59 (2007) 46–50.
DOI: 10.1007/s11837-007-0054-z
Google Scholar
[22]
K. Wilson, M. Baskes, D. Seidman, An in situ field-ion microscope study of the recovery behavior of ion-irradiated tungsten and tungsten alloys, Acta Metall. 28 (1980) 89–102.
DOI: 10.1016/0001-6160(80)90043-7
Google Scholar
[23]
G. Kresse, D. Joubert, Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. From ultrasoft pseudopotentials to the projector augmented-wave method. Physical Review B 59 (1999) 1758–1775.
DOI: 10.1103/physrevb.59.1758
Google Scholar
[24]
G. Kresse, J. Furthmu¨ller, Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set, Physical Review B 54 (1996) 11169–11186.
DOI: 10.1103/physrevb.54.11169
Google Scholar
[25]
J.P. Perdew, K. Burke, M. Ernzerhof, Generalized gradient approximation made simple, Physical Review Letters 77 (1996) 3865.
DOI: 10.1103/physrevlett.77.3865
Google Scholar
[26]
H.J. Monkhorst, J.D. Pack, Special points for Brillouin-zone integrations, Physical Review B 13 (1976) 5188–5192.
DOI: 10.1103/physrevb.13.5188
Google Scholar
[27]
T. Suzudo, M. Yamaguchi, A. Hasegawa, Stability and mobility of rhenium and osmium in tungsten: first principles study, Modelling and Simulation in Materials Science and Engineering 22 (2014) 075006.
DOI: 10.1088/0965-0393/22/7/075006
Google Scholar
[28]
L. Gharaee, P. Erhart, A first-principles investigation of interstitial defects in dilute tungsten alloys, Journal of Nuclear Materials 467 (2015) 448–456.
DOI: 10.1016/j.jnucmat.2015.09.003
Google Scholar
[29]
W. Setyawan G. Nandipati, K.J. Roche, H.L. Heinisch, B.D. Wirth, R.J. Kurtz, Displacement cascades and defects annealing in tungsten, Part I: Defect database from molecular dynamics simulations, Journal of Nuclear Materials 462 (2015) 329–337.
DOI: 10.1016/j.jnucmat.2014.12.056
Google Scholar
[30]
T. Suzudo, M. Yamaguchi, A. Hasegawa, Migration of rhenium and osmium interstitials in tungsten, Journal of Nuclear Materials 467 (2015) 418–423.
DOI: 10.1016/j.jnucmat.2015.05.051
Google Scholar
[31]
J. Marian, C.S. Becquart, C. Domain, S.L. Dudarev, M.R. Gilbert, R.J. Kurtz, D.R. Mason, K. Nordlund, A.E. Sand, L.L. Snead, T. Suzudo, B.D. Wirth, Recent advances in modeling and simulation of the exposure and response of tungsten to fusion energy conditions, Nuclear Fusion 57 (2017) 092008.
DOI: 10.1088/1741-4326/aa5e8d
Google Scholar
[32]
T. Suzudo, A. Hasegawa, Suppression of radiation-induced point defects by rhenium and osmium interstitials in tungsten, Scientific Reports, 6 (2016) 36738.
DOI: 10.1038/srep36738
Google Scholar
[33]
S.P Fitzgerald, D. Nguyen-Manh, Peierls potential for crowdions in the BCC transition metals, Physical Review Letters 101 (2008) 115504.
DOI: 10.1103/physrevlett.101.115504
Google Scholar
[34]
C.-H. Huang, L. Gharaee, Y. Zhao, P. Erhart, J. Marian, Mechanism of nucleation and incipient growth of re clusters in irradiated W-Re alloys from kinetic Monte Carlo simulations, Physical Review B 96 (2017) 094108.
DOI: 10.1103/physrevb.96.094108
Google Scholar
[35]
T. Suzudo, T. Tsuru, A. Hasegawa, First-principles study of solvent-solute mixed-dumbbells in body-centered-cubic tungsten crystals, Journal of Nuclear Materials 505 (2018) 15-21.
DOI: 10.1016/j.jnucmat.2018.03.052
Google Scholar
[36]
T. Toyama, K. Ami, K. Inoue, Y. Nagai, K. Sato, Q. Xu, Y. Hatano, Deuterium trapping at vacancy clusters in electron/neutron-irradiated tungsten studied by positron annihilation spectroscopy, Journal of Nuclear Materials, 499 (2018) 464-470.
DOI: 10.1016/j.jnucmat.2017.11.022
Google Scholar