Ab Initio Study of Helium in Tantalum: Interaction, Migration, and Clustering with Helium and Vacancies

Article Preview

Abstract:

Ab initio calculations based on the Density Function Theory (DFT) have been performed to study the interaction between helium and helium, helium and vacancy, migration of helium, and the stability of small helium-vacancy clusters in tantalum. The following results are found: (I) The tetrahedral interstitial helium atoms have weak interactions in tantalum, suggesting that no stable covalent bond is formed between this two helium atoms; (II) The stability of small helium-vacancy clusters is investigated. The interstitial helium atom and vacancy to the clusters are found to be positive in almost all case, i.e., all interactions are attractive; (III) The activation energies for a substitutional helium atom migration by the dissociation or vacancy mechanisms are estimated under the irradiation condition.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volume 1024)

Pages:

121-126

Citation:

Online since:

March 2021

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2021 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] J. Chen, H. Ullmaier, T. Flobdorf, et.al., Mechanical properties of pure tantalum after 800MeV proton irradiation, J. Nucl. Mater. 298 (2001) 248.

Google Scholar

[2] Thak Sang Byun and Stuart A. Maloy, Dose dependence of mechanical properties in tantalum and tantalum alloys after low temperature irradiation, J. Nucl. Mater. 377 (2008) 72.

DOI: 10.1016/j.jnucmat.2008.02.034

Google Scholar

[3] F. Zielinski, J. M. Costantini, J. Haussy, et.al., Helium depth profiling in tantalum after ion implantation and high-temperature annealing, J. Nucl. Mater. 312 (2003) 141.

DOI: 10.1016/s0022-3115(02)01589-1

Google Scholar

[4] H. Rauh, H. Ullmaier, Hydrogen concentrations near cracks in target materials for high-power spallation neutron sources, J. Nucl. Mater. 295 (2001) 109.

DOI: 10.1016/s0022-3115(01)00430-5

Google Scholar

[5] F. Luo, Z. Yao, and L. Guo, Mater. Sci. Eng. A 607 (2014) 390.

Google Scholar

[6] Y. Dai, Y. Foucher, M. R. James, et.al., Neutronics calculation, dosimetry analysis and gas measurements of the first SINQ target irradiation experiment STIP-1, J. Nucl. Mater. 318 (2003) 167.

DOI: 10.1016/s0022-3115(03)00099-0

Google Scholar

[7] C. S. Becquart and C. Domain, Phys. Rev. Lett. 94 (2006) 196402.

Google Scholar

[8] C. C. Fu and F. Willaime, Phys. Rev. B 72 (2005) 064117.

Google Scholar

[9] R. L. Klueh, N. Hashimoto, M. A. Sokolov, et.al., Mechanical properties of neutron-irradiated nickel-containing martensitic steel: I Experimental study, J. Nucl. Mater. 357 (2006) 156.

DOI: 10.1016/j.jnucmat.2006.05.048

Google Scholar

[10] R. L. Klueh, N. Hashimoto, M. A. Sokolov, et.al., Mechanical properties of neutron-irradiated nickel-containing martensitic steel: II Review and analysis of helium-effects studies, J. Nucl. Mater. 357 (2006) 169.

DOI: 10.1016/j.jnucmat.2006.05.049

Google Scholar

[11] F. Willaime, C.C. Fu, Mater. Res. Symp. Proc., 0981-JJ05-04, (2007).

Google Scholar

[12] T. Seletskaia, Y. Osetsky, R.E. Stoller, G.M. Stocks, Phys. Rev. B 78 (2008)134103.

Google Scholar

[13] T. Suzudo, M. Yamaguchi, J. Nucl. Mater. 465 (2015) 695.

Google Scholar

[14] G. Kresse, and J. Hafner, Phys. Rev. B 47 (1993) 558 (R).

Google Scholar

[15] J. P. Perdwe, J. A. Chevary, S. H. Vosko, et al., Phys. Rev. B 46 (1992) 6671.

Google Scholar

[16] W. Yin, X. Jia, Q. Z. Yu, et al., First-principle study of the interaction between helium and the defects in tantalum, J. Nucl. Mater. 480 (2016) 202.

Google Scholar

[17] C. J. Ortiz, M. J. Caturla, C. C. Fu, et al. Phys. Rev. B 75, (2007) 100102(R).

Google Scholar

[18] K. Morishita, R. Sugano, B. D. Wirth, et al., Nucl. Instrum. Methods. B 202 (2003) 76.

Google Scholar

[19] T. Schober, R. Lässer, J. Golczewski, et al., Phys. Rev. B 31 (1985) 7109.

Google Scholar