Effect of Gas Microbubble Injection and Narrow Channel Structure on Cavitation Damage in Mercury Target Vessel

Article Preview

Abstract:

The target vessel, which enclosing liquid mercury, for the pulsed spallation neutron source at the J-PARC is severely damaged by cavitation caused by proton beam-induce pressure waves in mercury. To mitigate the cavitation damage, we adopted a double-walled structure with a narrow channel for the mercury at the beam window of the target vessel. The narrow channel disturbs the growth of cavitation bubbles due to the pressure gradient. In addition, gas microbubbles are injected into the mercury to suppress the pressure waves. After finishing service operation, the front end of the target vessel was cut out to inspect the effect of those cavitation damage mitigation technologies on the interior surface. The damage depth of the cutout specimens for the original design type and double-walled target vessels were quantitatively investigated by the replica method. The results showed that the double-walled target facing mercury with gas microbubbles operate 1812 MWh for an average power of 434 kW is equivalent to the damage of original design target operated 1048 MWh for average power of 181 kW. The erosion depth due to cavitation in the narrow channel is clearly smaller than on the wall facing bubbly mercury.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volume 1024)

Pages:

111-120

Citation:

Online since:

March 2021

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2021 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] H. Takada, K. Haga, M. Teshigawara, T. Aso, S. Meigo, H. Kogawa, T. Naoe, T. Wakui, M. Ooi, M. Harada, M. Futakawa, Materials and Life Science Experimental Facility at the Japan Proton Accelerator Research Complex I: Pulsed Spallation Neutron Source, Qnant. Beam Sci. 1 (2017) 8-1-26.

DOI: 10.3390/qubs1020008

Google Scholar

[2] J. Haines, T. McManamy, T. Gabriel, R. Battle, K. Chipley, J. Crabtree, L. Jacobs, D. Lousteau, M. Rennich, B. Riemer, Spallation neutron source target station design, development, and commissioning, Nucl. Instrum. Phus. Res. A 764 (2014) 94-115.

DOI: 10.1016/j.nima.2014.03.068

Google Scholar

[3] M. Futakawa, H. Kogawa, R. Hino, H. Date, H. Takeishi, Erosion damage on solid boundaries in contact with liquid metals by impulsive pressure injection, Int. J. Impact Eng. 28 (2003) 123-135.

DOI: 10.1016/s0734-743x(02)00054-4

Google Scholar

[4] K. Okita, S. Takagi, Y. Matsumoto, Propagation of pressure waves, caused by a thermal shock, in liquid metals containing gas bubbles, J. Fluid Sci. Technol.3 (2008) 116-128.

DOI: 10.1299/jfst.3.116

Google Scholar

[5] H. Kogawa, T. Naoe, H. Kyotoh, K. Haga, H. Kinoshita, M. Futakawa, Development of microbubble generator for suppression of pressure waves in mercury target of spallation source, J. Nucl. Sci. Technol. 52 (2015) 1461-1469.

DOI: 10.1080/00223131.2015.1009188

Google Scholar

[6] H. Kogawa, T. Naoe, M. Futakawa, K. Haga, T. Wakui, M. Harada, H. Takada, Mitigation technologies for damage induced by pressure waves in high-power mercury spallation neutron sources (IV) – measurement of pressure wave response and microbubble effect on mitigation in mercury target at J-PARC –, J. Nucl. Sci. Technol. 54 (2017) 733-741.

DOI: 10.1080/00223131.2017.1309302

Google Scholar

[7] T. Naoe, T. Wakui, H. Kinoshita, H. Kogawa, K. Haga, M. Harada, H. Takada, M. Futakawa, Cavitation damage in double-walled mercury target vessel, J. Nucl. Mater. 506 (2018) 35-42.

DOI: 10.1016/j.jnucmat.2017.10.044

Google Scholar

[8] T. Naoe, H. Kogawa, T. Wakui, K. Haga, M. Teshigawara, H. Kinoshita, H. Takada, M. Futakawa, Cavitation damage prediction for the JSNS mercury target vessel, J. Nucl. Mater. 468 (2016) 313-320.

DOI: 10.1016/j.jnucmat.2015.08.035

Google Scholar

[9] B. Riemer, D. McClintock, S. Kaminskas, A. Abdou, Correlation between simulations and cavitation-induced erosion damage in Spallation Neutron Source target modules after operation, J. Nucl. Mater. 450 (2014) 183-191.

DOI: 10.1016/j.jnucmat.2013.10.057

Google Scholar

[10] H. Takada, K. Haga. Recent status of the pulsed spallation neutron source at J-PARC, JPS Conf. Proc., 28 (2020) 081003-1-7.

DOI: 10.7566/jpscp.28.081003

Google Scholar

[11] H. Kinoshita, K. Haga, M. Seki, T. Suzuki, M. Ito, Y. Kasugai, T. Wakui, H. Kogawa, T. Naoe, K. Hanano, M. Teshigawara, F. Maekawa, S. Sakamoto, M. Futakawa, Development of cut out machine for PIE test pieces from mercury target vessel in J-PARC, Proc. 20th Int. Collaboration on Advanced Neutron Sources, Bariloche, 2012, Vol.1, pp.559-566.

DOI: 10.1016/j.jnucmat.2015.08.035

Google Scholar

[12] M. Futakawa, T. Naoe, H. Kogawa, M. Teshigawara, Y. Ikeda, Effects of pitting damage on fatigue limit and lifetime in mercury target, J. Nucl. Mater. 356 (2006) 168-177.

DOI: 10.1016/j.jnucmat.2006.05.018

Google Scholar

[13] T. Naoe, M. Futakawa, T. Oi, T. Wakui, Y. Motohashi, Fatigue strength degradation by pitting damage, J. Soc. Mater. Sci. Japan 55 (2006) 944-950.

DOI: 10.2472/jsms.55.944

Google Scholar

[14] K. Haga, T. Naoe, T. Wakui, H. Kogawa, H. Kinoshita, M. Futakawa, Thermal hydraulic design of a double-walled mercury target vessel, JPS Conf. Proc. 8 (2015) 051008-1-6.

DOI: 10.7566/jpscp.8.051008

Google Scholar

[15] M. Futakawa, H. Kogawa, S. Hasegawa, T. Naoe, M. Ida, K. Haga, et al., Mitigation technologies for damage induced by pressure waves in high-power mercury spallation neutron sources (II) -Bubbling effect to reduce pressure wave-, J. Nucl. Sci. Technol. 45 (2008) 1041-1048.

DOI: 10.3327/jnst.45.1041

Google Scholar

[16] S. Kawamura, T. Naoe, T. Ikeda, N. Tanaka, M. Futakawa, Evaluation growing and collapsing behaviors of cavitation bubbles under flowing condition, Adv. Exp. Mech. 4 (2019) 33-37.

DOI: 10.1299/jsmeibaraki.2018.26.316

Google Scholar

[17] T. Naoe, H. Kogawa, N. Tanaka, M. Futakawa, Pulsed pressure induced cavitation erosion in mercury narrow channel under flowing conditions, Adv. Exp. Mech. 4 (2019) 17-21.

Google Scholar

[18] B. Vevera, D. McClintock, J. Hyers, B. Riemer, Characterization of irradiated AISI 316L stainless steel disks removed from the Spallation Neutron Source, J. Nucl. Mater. 450 (2014) 147-162.

DOI: 10.1016/j.jnucmat.2014.02.035

Google Scholar

[19] D. McClintock, D. Bruce, R. Schwartz, T. Carroll, M. Dayton, D. Winder, Laser line scan characterization of cavitation-induced erosion to SNS mercury target vessels, ORNL/TM-2019/1103, (2019).

DOI: 10.2172/1492155

Google Scholar