Electrochemical Characterization of Graphite-Zero-Valent Iron for 3-Monochloropropane-1,2-Diol (3-MCPD) Detection

Article Preview

Abstract:

This study aims to investigate the feasibility of modifying graphite electrode with zero-valent iron (ZVI) to electrochemically detect the presence of 3-MCPD using two (2) deposition methods, namely dip coating and drop casting. Both methods were tested against in situ and ex situ ZVI formation method. Results showed that ex situ ZVI formation using drop casting method onto graphite electrode showed highest peak current when tested using cyclic voltammetry (CV). Results also showed that the 3-MCPD presence was detected at potential range of-25 mV to 45 mV due to the sudden spike in electrical current when tested using CV mode. The impact of this study is to provide a basis for further investigation of 3-MCPD detection in palm oil using electrochemical method due to its simplicity for the development of a portable, fast and reliable 3-MCPD sensor.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volume 1025)

Pages:

20-25

Citation:

Online since:

March 2021

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2021 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] MPOB 2019, Industry Development Unit, Economics & Industry Development Division Malaysian Palm Oil Board.

Google Scholar

[2] EFSA Panel on Contaminants in the Food Chain (CONTAM). Risks for human health related to the presence of 3- and 2-monochloropropanediol (MCPD), and their fatty acid esters, and glycidyl fatty acid esters in food, Efsa Journal. 14.5 (2016) e04426.

DOI: 10.2903/j.efsa.2016.4426

Google Scholar

[3] R. Weiβhaar, Fatty acid esters of 3-MCPD: Overview of occurrence and exposure estimates, European Journal of Lipid Science and Technology. 113 (2011) 304-308.

DOI: 10.1002/ejlt.201000312

Google Scholar

[4] F. Destaillats, B. D. Craft, L. Sandoz, K. Nagy, Formation mechanisms of monochloropropanediol (MCPD) fatty acid diesters in refined palm (Elaeis guineensis) oil and related fractions, Food Additives & Contaminants: Part A. 29 (2012) 29-37.

DOI: 10.1080/19440049.2011.633493

Google Scholar

[5] M. R. Ramli, W. L. Siew, N. A. Ibrahim, R. Hussein, A. Kunton, R. A. A. Razak, K. Nesaretnam, Effects of degumming and bleaching on 3-MCPD esters formation during physical refining, Journal of the American Oil Chemists' Society. 88 (2011) 1839-1844.

DOI: 10.1007/s11746-011-1858-0

Google Scholar

[6] K. Hrncirik, G. van Duijn, An initial study on the formation of 3-MCPD esters during oil refining, Eur. J. Lipid Sci. Tech., 113 (2011) 374-379.

DOI: 10.1002/ejlt.201000317

Google Scholar

[7] F. Destaillats, B. D. Craft, L. Sandoz, K. Nagy, Formation mechanisms of Monochloropropanediol (MCPD) fatty acid diesters in refined palm (Elaeis guineensis) oil and related fractions, Food Additives & Contaminants: Part A: Chemistry, Analysis, Control, Exposure & Risk Assessment. 29 (2012) 29-37.

DOI: 10.1080/19440049.2011.633493

Google Scholar

[8] K. Nagy, L. Sandoz, B. D. Craft, F. Destaillats, Mass-defect filtering of isotope signatures to reveal the source of chlorinated palm oil contaminants, Food Additives & Contaminants: Part A: Chemistry, Analysis, Control, Exposure & Risk Assessment. 28 (2011) 1492-1500.

DOI: 10.1080/19440049.2011.618467

Google Scholar

[9] J. Šmidrkal, M. Tesařová, I. Hrádková, M. Berčíková, A. Adamčíková, V. Filip, Mechanism of formation of 3-chloropropan-1, 2-diol (3-MCPD) esters under conditions of the vegetable oil refining, Food Chemistry. 211 (2016) 124-129.

DOI: 10.1016/j.foodchem.2016.05.039

Google Scholar

[10] Esters-Genotoxic, Glycidyl Fatty Acids, EUROPEAN UNION. (2016).

Google Scholar

[11] R. Weiβhaar, Determination of total 3-chloropropane-1,2-diol (3-MCPD) in edible oils by cleavage of MCPD esters with sodium methoxide, European Journal of Lipid Science and Technology. 110 (2008) 183-186.

DOI: 10.1002/ejlt.200700197

Google Scholar

[12] W. Kim, Y.A. Jeong, J. On, A. Choi, J.Y. Lee, J.G. Lee, H. Pyo, Analysis of 3-MCPD and 1,3-DCP in various foodstuffs using GC-MS, Toxicological Research. 31 (2015) 313-319.

DOI: 10.5487/tr.2015.31.3.313

Google Scholar

[13] H. Dhadhore, C. Kaur, S. Shrivastava, R. Choudhary, Synthesis and characterization of zero valent iron nanoparticles, AIP Conference Proceedings. 2100 (2019) 020021.

DOI: 10.1063/1.5098575

Google Scholar

[14] P.E. Marina, G.A. Ali, L.M. See, E.Y.L. Teo, E.P. Ng, K.F. Chong, In situ growth of redox-active iron-centered nanoparticles on graphene sheets for specific capacitance enhancement, Arabian Journal of Chemistry. 12 (2019) 3883-3889.

DOI: 10.1016/j.arabjc.2016.02.006

Google Scholar

[15] J. Yang, L. Meng, L. Guo, In situ remediation of chlorinated solvent-contaminated groundwater using ZVI/organic carbon amendment in China: field pilot test and full-scale application, Environmental Science and Pollution Research. 25 (2018) 5051-5062.

DOI: 10.1007/s11356-017-9903-7

Google Scholar

[16] B. G. Jung, S. H. Min, C. W. Kwon, S. H. Park, K. B. Kim, T. S. Yoon, Colloidal nanoparticle-layer formation through dip-coating: effect of solvents and substrate withdrawing speed, Journal of The Electrochemical Society. 156 (2009) K86.

DOI: 10.1149/1.3089364

Google Scholar

[17] C. Zhao, L. Xing, J. Xiang, L. Cui, J. Jiao, H. Sai, F. Li, Formation of uniform reduced graphene oxide films on modified PET substrates using drop-casting method, Particuology. 17 (2014) 66-73.

DOI: 10.1016/j.partic.2014.02.005

Google Scholar

[18] A. Hamdy, M. K. Mostafa, M. Nasr, Zero-valent iron nanoparticles for methylene blue removal from aqueous solutions and textile wastewater treatment, with cost estimation, Water Science and Technology. 78 (2018) 367-378.

DOI: 10.2166/wst.2018.306

Google Scholar

[19] X. Sun, L. Zhang, H. Zhang, H. Qian, Y. Zhang, L. Tang, Z. Li, Development and application of 3-chloro-1, 2-propandiol electrochemical sensor based on a polyaminothiophenol modified molecularly imprinted film, Journal of agricultural and food chemistry. 62 (2014) 4552-4557.

DOI: 10.1021/jf4055159

Google Scholar

[20] E. Pourtaheri, M. A. Taher, G. A. Ali, S. Agarwal, V. K. Gupta, Low-cost and Highly Sensitive Sensor for Determining Atorvastatin Using PbTe Nanoparticles-Modified Graphite Screen-Printed Electrode, International Journal of Electrochemical Science. 14 (2019) 9622-9632.

DOI: 10.20964/2019.10.01

Google Scholar