Oxygen Reduction Reaction in Layer-by-Layer Fabricated Cobalt Porphyrin-Based Nanostructures

Article Preview

Abstract:

Metalloporphyrin-based nanostructures were fabricated on 3-aminopropylmethoxysilane-modified indium tin oxide (ITO) surface. UV-visible spectroscopy and cyclic voltammetry are used for investigating electronic absorption spectra and catalytic activity in oxygen reduction reactions as alternative cathode electrochemical catalysts for polymer electrolyte membrane fuel cells (PEMFCs). Using of 5,10,15,20-tetrakis-(4-amiophenyl)-porphyrin-Co (II) as a building block and 1,4-phenylene diisocyanate as a linker, the mixed toluene/chloroform solution-based layer-by-layer process can produce linear growth of 5,10,15,20-tetrakis-(4-amiophenyl)-porphyrin-Co (II) up to 30 layers through urea bonds. The vacuum thermal annealing process demonstrated the improvement of catalytic activity in oxygen reduction reaction.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volume 1025)

Pages:

3-8

Citation:

Online since:

March 2021

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2021 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Y. Wang, K.S. Chen, J. Mishler, S.C. Cho, X.C. Adroher, A review of polymer electrolyte membrane fuel cells: Technology, applications, and needs on fundamental research, Appl. Energ. 88 (2011) 981-1007.

DOI: 10.1016/j.apenergy.2010.09.030

Google Scholar

[2] Y. Nagao, Progress on highly proton-conductive polymer thin films with organized structure and molecularly oriented structure, Sci. Tech. Adv. Mater 21 (2020) 79-91.

DOI: 10.1080/14686996.2020.1722740

Google Scholar

[3] Y. Nagao, Proton-conductivity enhancement in polymer thin films, Langmuir 33 (2017) 12547-12558.

DOI: 10.1021/acs.langmuir.7b01484

Google Scholar

[4] T. Abe, M. Kaneko, Reduction catalysis by metal complexes confined in a polymer matrix, Prog. Polym. Sci. 28 (2003) 1441-1488.

DOI: 10.1016/s0079-6700(03)00057-1

Google Scholar

[5] M. Sono, M.P. Roach, E.D. Coulter, J.H. Dawson, Heme-containing oxygenases, Chem. Rev. 96 (1996) 2841-2888.

DOI: 10.1021/cr9500500

Google Scholar

[6] J.P. Collman, P. Denisevich, Y. Konai, M. Marrocco, C. Koval, F.C. Anson, Electrode catalysis of the four-electron reduction of oxygen to water by dicobalt face-to-face porphyrins, J. Am. Chem. Soc. 102 (1980) 6027-6036.

DOI: 10.1021/ja00539a009

Google Scholar

[7] M. Pérez-Morales, G. de Miguel, E. Muñoz, M.T. Martín-Romero, L. Camacho, Oxygen storage/release in cobalt porphyrin electrodeposited films, Electrochim. Acta 54 (2009) 1791-1797.

DOI: 10.1016/j.electacta.2008.09.070

Google Scholar

[8] B. Su, I. Hatay, A. Trojánek, Z. Samec, T. Khoury, C.P. Gros, J.-M. Barbe, A. Daina, P.-A. Carrupt, H.H. Girault, Molecular electrocatalysis for oxygen reduction by cobalt porphyrins adsorbed at liquid/liquid interfaces, J. Am. Chem. Soc. 132 (2010) 2655-2662.

DOI: 10.1021/ja908488s

Google Scholar

[9] A. Yella, H.-W. Lee, H.N. Tsao, C. Yi, A.K. Chandiran, M.K. Nazeeruddin, E.W.-G. Diau, C.-Y. Yeh, S.M. Zakeeruddin, M. Graetzel, Porphyrin-sensitized solar cells with cobalt (ii/iii)-based redox electrolyte exceed 12% efficiency, Science 334 (2011) 629-634.

DOI: 10.1126/science.1209688

Google Scholar

[10] W. Zhang, W. Lai, R. Cao, Energy-related small molecule activation reactions: Oxygen reduction and hydrogen and oxygen evolution reactions catalyzed by porphyrin- and corrole-based systems, Chem. Rev. 117 (2017) 3717-3797.

DOI: 10.1021/acs.chemrev.6b00299

Google Scholar

[11] D. Li, B.I. Swanson, J.M. Robinson, M.A. Hoffbauer, Porphyrin based self-assembled monolayer thin films: Synthesis and characterization, J. Am. Chem. Soc. 115 (1993) 6975-6980.

DOI: 10.1021/ja00068a068

Google Scholar

[12] F. Da Cruz, K. Driaf, C. Berthier, J.M. Lameille, F. Armand, Study of a self-assembled porphyrin monomolecular layer obtained by metal complexation, Thin Solid Films 349 (1999) 155-161.

DOI: 10.1016/s0040-6090(99)00169-8

Google Scholar

[13] Y. Shen, J. Liu, J. Jiang, B. Liu, S. Dong, Fabrication of a metalloporphyrin−polyoxometalate hybrid film by a layer-by-layer method and its catalysis for hydrogen evolution and dioxygen reduction, J. Phys. Chem. B 107 (2003) 9744-9748.

DOI: 10.1021/jp035274y

Google Scholar

[14] S. Laokroekkiat, M. Hara, S. Nagano, Y. Nagao, Metal-organic coordination network thin film by surface-induced assembly, Langmuir 32 (2016) 6648-6655.

DOI: 10.1021/acs.langmuir.6b01251

Google Scholar

[15] A. Marcos-Fernández, A.E. Lozano, L. González, A. Rodríguez, Hydrogen bonding in copoly(ether−urea)s and its relationship with the physical properties, Macromolecules 30 (1997) 3584-3592.

DOI: 10.1021/ma9619039

Google Scholar

[16] P. Kohli, G.J. Blanchard, Applying polymer chemistry to interfaces:  Layer-by-layer and spontaneous growth of covalently bound multilayers, Langmuir 16 (2000) 4655-4661.

DOI: 10.1021/la000120k

Google Scholar

[17] S.M.N. Uddin, Y. Nagao, Multilayer growth of porphyrin-based polyurea thin film using solution-based molecular layer deposition technique, Langmuir 33 (2017) 12777-12784.

DOI: 10.1021/acs.langmuir.7b03450

Google Scholar

[18] M.A. Rashed, S. Laokroekkiat, M. Hara, S. Nagano, Y. Nagao, Fabrication and characterization of cross-linked organic thin films with nonlinear mass densities, Langmuir 32 (2016) 5917-5924.

DOI: 10.1021/acs.langmuir.6b00540

Google Scholar

[19] P.W. Loscutoff, H. Zhou, S.B. Clendenning, S.F. Bent, Formation of organic nanoscale laminates and blends by molecular layer deposition, ACS Nano 4 (2010) 331-341.

DOI: 10.1021/nn901013r

Google Scholar

[20] V. Campo Dall' Orto, R. Carballo, J.A. Hurst, I. Rezzano, Uv–vis spectroscopic study of co(ii)/co(iii) oxidation in poly[m-protoporphyrins] films and their interaction with axial ligands, Spectrochim. Acta A 61 (2005) 2089-2093.

DOI: 10.1016/j.saa.2004.08.010

Google Scholar

[21] X. Zhou, S.-W. Kang, S. Kumar, R.R. Kulkarni, S.Z.D. Cheng, Q. Li, Self-assembly of porphyrin and fullerene supramolecular complex into highly ordered nanostructure by simple thermal annealing, Chem. Mater. 20 (2008) 3551-3553.

DOI: 10.1021/cm800383q

Google Scholar