Effect of Intermolecular Interaction on Ionic Conductivity of CMC-DTAB Plasticized with Ec Based Solid Biopolymer Electrolyte

Article Preview

Abstract:

The present work highlights on the structural and conduction properties of the solid biopolymer electrolytes (SBPE) based carboxymethyl cellulose (CMC) doped dodecyltrimethyl ammonium bromide (DTAB) and plasticized with ethylene carbonate (EC). The SBPE exhibits high ionic conductivity at room temperature where the highest value reaching 1.0 x 10-3 S cm-1 for sample containing with 10 wt. % of EC and increases the ionic conductivity when temperature was increased. Complexation within the SBPE has been confirmed by the FTIR analysis where the intermolecular interaction has improvised the coordination between CMC-DTAB and EC resulting in better structural and conductivity ability. The findings suggest that the great potential of CMC and make it promising to serve as an electrolyte for electrochemical devices.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volume 1025)

Pages:

26-31

Citation:

Online since:

March 2021

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2021 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] J. Kim, R. Kumar, A.J. Bandodkar, J. Wang, Advanced materials for printed wearable electrochemical devices: A review, Advanced Electronic Materials 3(1) (2017) 1600260.

DOI: 10.1002/aelm.201600260

Google Scholar

[2] A.J. Bandodkar, W. Jia, J. Wang, Tattoo‐based wearable electrochemical devices: a review, Electroanalysis 27(3) (2015) 562-572.

DOI: 10.1002/elan.201400537

Google Scholar

[3] J.A. Hondred, I.L. Medintz, J.C. Claussen, Enhanced electrochemical biosensor and supercapacitor with 3D porous architectured graphene via salt impregnated inkjet maskless lithography, Nanoscale Horizons 4(3) (2019) 735-746.

DOI: 10.1039/c8nh00377g

Google Scholar

[4] M. Hafiza, M. Isa, Correlation between structural, ion transport and ionic conductivity of plasticized 2-hydroxyethyl cellulose based solid biopolymer electrolyte, Journal of Membrane Science 597 (2020) 117176.

DOI: 10.1016/j.memsci.2019.117176

Google Scholar

[5] M. Chai, M. Isa, The oleic acid composition effect on the carboxymethyl cellulose based biopolymer electrolyte, (2013).

Google Scholar

[6] L. Sampathkumar, P.C. Selvin, S. Selvasekarapandian, P. Perumal, R. Chitra, M. Muthukrishnan, Synthesis and characterization of biopolymer electrolyte based on tamarind seed polysaccharide, lithium perchlorate and ethylene carbonate for electrochemical applications, Ionics 25(3) (2019) 1067-1082.

DOI: 10.1007/s11581-019-02857-1

Google Scholar

[7] R. Singh, J. Baghel, S. Shukla, B. Bhattacharya, H.-W. Rhee, P.K. Singh, Detailed electrical measurements on sago starch biopolymer solid electrolyte, Phase Transitions 87(12) (2014) 1237-1245.

DOI: 10.1080/01411594.2014.944911

Google Scholar

[8] Y.A. Salman, O.G. Abdullah, R.R. Hanna, S.B. Aziz, Conductivity and electrical properties of chitosan-methylcellulose blend biopolymer electrolyte incorporated with lithium tetrafluoroborate, Int. J. Electrochem. Sci 13 (2018) 3185-3199.

DOI: 10.20964/2018.04.25

Google Scholar

[9] I. Vroman, L. Tighzert, Biodegradable polymers, Materials 2(2) (2009) 307-344.

Google Scholar

[10] M. Saadiah, Y. Nagao, A. Samsudin, Proton (H+) transport properties of CMC–PVA blended polymer solid electrolyte doped with NH4NO3, International Journal of Hydrogen Energy (2020).

DOI: 10.1016/j.ijhydene.2020.03.213

Google Scholar

[11] A. Samsudin, M. Isa, Structural and electrical properties of carboxy methylcellulose-dodecyltrimethyl ammonium bromide-based biopolymer electrolytes system, International Journal of Polymeric Materials 61(1) (2012) 30-40.

DOI: 10.1080/00914037.2011.557810

Google Scholar

[12] A. Zulkifli, M. Saadiah, N. Mazuki, A. Samsudin, Characterization of an amorphous materials hybrid polymer electrolyte based on a LiNO3-doped, CMC-PVA blend for application in an electrical double layer capacitor, Materials Chemistry and Physics (2020) 123312.

DOI: 10.1016/j.matchemphys.2020.123312

Google Scholar

[13] W. Zhan, Y. Yuan, H. Yi, S. Song, C. Liu, Hydrophobic agglomeration of montmorillonite fines in aqueous solutions induced by dodecyl trimethyl ammonium bromides, Chemical Physics Letters 739 (2020) 136999.

DOI: 10.1016/j.cplett.2019.136999

Google Scholar

[14] H. Liu, P. Yuan, D. Liu, H. Bu, H. Song, Z. Qin, H. He, Pyrolysis behaviors of organic matter (OM) with the same alkyl main chain but different functional groups in the presence of clay minerals, Applied Clay Science 153 (2018) 205-216.

DOI: 10.1016/j.clay.2017.12.028

Google Scholar

[15] P.A.B. Ranjana, S. Jeya, S. Abarna, M. Premalatha, A. Arulsankar, B. Sundaresan, Enhancement of Na+ ion conduction in polymer blend electrolyte P (VdF-HFP)–PMMA-NaTf by the inclusion of EC, Journal of Polymer Research 26(2) (2019) 38.

DOI: 10.1007/s10965-019-1704-x

Google Scholar

[16] M.N. Hafiza, M.I.N. Isa, Correlation between structural, ion transport and ionic conductivity of plasticized 2-hydroxyethyl cellulose based solid biopolymer electrolyte, Journal of Membrane Science 597 (2020) 117176.

DOI: 10.1016/j.memsci.2019.117176

Google Scholar

[17] V. Moniha, M. Alagar, S. Selvasekarapandian, B. Sundaresan, G. Boopathi, Conductive bio-polymer electrolyte iota-carrageenan with ammonium nitrate for application in electrochemical devices, Journal of Non-Crystalline Solids 481 (2018) 424-434.

DOI: 10.1016/j.jnoncrysol.2017.11.027

Google Scholar

[18] K.M.G. Francis, S. Subramanian, K. Shunmugavel, V. Naranappa, S.S.M. Pandian, S.C. Nadar, Lithium ion-conducting blend polymer electrolyte based on PVA–PAN doped with lithium nitrate, Polymer-Plastics Technology and Engineering 55(1) (2016) 25-35.

DOI: 10.1080/03602559.2015.1050523

Google Scholar

[19] K. Sundaramahalingam, D. Vanitha, N. Nallamuthu, A. Manikandan, M. Muthuvinayagam, Electrical properties of lithium bromide poly ethylene oxide/poly vinyl pyrrolidone polymer blend elctrolyte, Physica B: Condensed Matter 553 (2019) 120-126.

DOI: 10.1016/j.physb.2018.10.040

Google Scholar

[20] A. Fuzlin, N. Bakri, B. Sahraoui, A. Samsudin, Study on the effect of lithium nitrate in ionic conduction properties based alginate biopolymer electrolytes, Materials Research Express 7(1) (2019) 015902.

DOI: 10.1088/2053-1591/ab57bb

Google Scholar