Simulation and Optimization of C60-Based Organic Light-Emitting Diodes

Article Preview

Abstract:

In this work we present a detailed analysis of the current-voltage variance from tris(8-hydroxyquinoline)aluminum (Alq3) based organic light emitting diodes using general-purpose photovoltaic device model (GPVDM) software as a function of: the choice of C60, the thickness of emission layer and hole-transport layer. The electrical and optical parameters of all layers were extracted from the material directory available in GPVDM. The calculations fully consider dispersion in glass substrate, indium tin oxide anode, the organic layers as well as the dispersion in the metal cathode. As expected, applied voltage was strongly dependent on the thickness of the function layer inside the devices. Finally, guidelines for designing devices with optimum turn-on voltage and thickness are presented.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volume 1026)

Pages:

142-146

Citation:

Online since:

April 2021

Authors:

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2021 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] W. Brütting, S. Berleb, A. G. Muckl, Device physics of organic light-emitting diodes based on molecular materials, Org. Electron. 2 (2001) 1-36.

DOI: 10.1016/s1566-1199(01)00009-x

Google Scholar

[2] L. S. Hung, C. H. Chen, Recent progress of molecular organic electroluminescent materials and devices, Mat. Sci. Eng. R 39 (2002) 143-202.

Google Scholar

[3] S. K. So, W. K. Choi, L. M. Leung, K. Neyts, Interference effects in bilayer organic light-emitting diodes, Appl. Phys. Lett. 74 (1999) 1939-1941.

DOI: 10.1063/1.123734

Google Scholar

[4] H. Riel, S. Karg, T. Beierlein, W. Rie, K. Neyts, Tuning the emission characteristics of top-emitting organic light-emitting devices by means of a dielectric capping layer: An experimental and theoretical study, J. Appl. Phys. 94 (2003) 5290-5296.

DOI: 10.1063/1.1605256

Google Scholar

[5] J. Y. Lee, J. H. Kwon, Enhanced hole transport in C60-doped hole transport layer, Appl. Phys. Lett. 88 (2006) 183502.

DOI: 10.1063/1.2172296

Google Scholar

[6] Y. Yuan, D. Grozea, Z. H. Lu, Fullerene-doped hole transport molecular films for organic light-emitting diodes, Appl. Phys. Lett. 86 (2005) 143509.

DOI: 10.1063/1.1899241

Google Scholar

[7] Z. Y. Lü, Z. B. Deng, J. J. Zheng, Y. H. Yin, Y. L. Chen, Y. S. Wang, Organic light-emitting diodes with nanostructured fullerene ultrathin layers, Phys. B 534 (2018) 113-119.

DOI: 10.1016/j.physb.2009.08.077

Google Scholar

[8] K. Kato, K. Takahashi, K. Suzuki, T. Sato, K. Shinbo, F. Kaneko, H. Shimizu, N. Tsuboi, T. Tadokoro, S. Ohta, Organic light emitting diodes with nanostructured ultrathin layers at the interface between electron- and hole-transport layers, Curr. Appl. Phys. 5 (2005) 321-326.

DOI: 10.1016/j.cap.2004.01.047

Google Scholar

[9] Y. Liu, X. Wu, Z. Xiao, J. Gao, J. Zhang, H. Rui, X. Lin, N. Zhang, Y. Hua, S. Yin, Highly efficient tandem OLED based on C60/rubrene: MoO3 as charge generation layer and LiF/Al as electron injection layer, Appl. Surf. Sci. 413 (2017) 302-307.

DOI: 10.1016/j.apsusc.2017.04.038

Google Scholar

[10] General-purpose Photovoltaic Device Model – gpvdm, retrieved from https://www.gpvdm.com/ on 11/19/(2020).

Google Scholar

[11] D. Xu, Z. Deng, J. Xiao, D. Guo, J. Hao, Y. Zhang, Y. Gao, C. Liang, The effect of C60 doping on the electroluminescent performance of organic light-emitting devices, J. Lumin. 122 (2007) 642-645.

DOI: 10.1016/j.jlumin.2006.01.248

Google Scholar

[12] C. Williams, S. Lee, J. Ferraris, A. A. Zakhidov, Exciton-dopant and exciton-charge interactions in electronically doped OLEDs, J. Lumin. 110 (2004) 396-406.

DOI: 10.1016/j.jlumin.2004.08.038

Google Scholar