[1]
J. van der Geer, J.A.J. Hanraads, R.A. Lupton, The art of writing a scientific article, J. Sci. Commun. 163 (2000) 51-59. Reference to a book:.
Google Scholar
[2]
W. Strunk Jr., E.B. White, The Elements of Style, third ed., Macmillan, New York, 1979. Reference to a chapter in an edited book:.
Google Scholar
[3]
G.R. Mettam, L.B. Adams, How to prepare an electronic version of your article, in: B.S. Jones, R.Z. Smith (Eds.), Introduction to the Electronic Age, E-Publishing Inc., New York, 1999, pp.281-304.
Google Scholar
[4]
R.J. Ong, J.T. Dawley and P.G. Clem: submitted to Journal of Materials Research (2003).
Google Scholar
[5]
P.G. Clem, M. Rodriguez, J.A. Voigt and C.S. Ashley, U.S. Patent 6,231,666. (2001).
Google Scholar
[6]
Information on http://www.weld.labs.gov.cn.
Google Scholar
[1]
M.G. Albrecht, J.A. Creighton, Anomalously intense Raman spectra of pyridine at a silver electrode, Journal of the American Chemical Society, 99 5215-5217.
DOI: 10.1021/ja00457a071
Google Scholar
[2]
A. Campion, P. Kambhampati, Surface-enhanced Raman scattering, 27 241-240.
Google Scholar
[3]
M. Fleischmann, P.J. Hendra, A.J. McQuillan, Raman spectra of pyridine adsorbed at a silver electrode, Chemical Physics Letters, 26 163-166.
DOI: 10.1016/0009-2614(74)85388-1
Google Scholar
[4]
D.L. Jeanmaire, R.P.V. Duyne, Surface Raman Spectroelectrochemistry: Part I. Heterocyclic, Aromatic, and Aliphatic Amines Adsorbed on the Anodized Silver Electrode.
Google Scholar
[5]
P. Boolchand, M. Jin, D.I. Novita, S. Chakravarty, Raman Scattering as a Probe of Intermediate Phases in Glassy Networks, Journal of Raman Spectroscopy, 38 (2007).
DOI: 10.1002/jrs.1707
Google Scholar
[6]
D. Kurouski, R.P. Van Duyne, <i>In Situ</i>\\r Detection and Identification of Hair Dyes Using Surface-Enhanced Raman Spectroscopy (SERS), Analytical Chemistry, 87 2901-2906.
DOI: 10.1021/ac504405u
Google Scholar
[7]
R.A. Rakkesh, D. Durgalakshmi, S. Balakumar, Graphene based nanoassembly for simultaneous detection and degradation of harmful organic contaminants from aqueous solution, Rsc Advances, 6 (2016).
DOI: 10.1039/c6ra01784c
Google Scholar
[8]
K. Rovina, P.P. Prabakaran, S. Siddiquee, S.M. Shaarani, Methods for the Analysis of Sunset Yellow FCF (E110) in Food and Beverage Products- A review, Trac Trends in Analytical Chemistry, S0165993615302326.
DOI: 10.1016/j.trac.2016.05.009
Google Scholar
[9]
P.Â.S. Schlã¼Cker, Surface-Enhanced Raman Spectroscopy: Concepts and Chemical Applications, Angewandte Chemie International Edition, 53 (2014) 4756-4795.
DOI: 10.1002/anie.201205748
Google Scholar
[10]
I.T. Shadi, B.Z. Chowdhry, M.J. Snowden, R. Withnall, Semi-quantitative analysis of indigo by surface enhanced resonance Raman spectroscopy (SERRS) using silver colloids, 59 (2003) 2201-2206.
DOI: 10.1016/s1386-1425(03)00063-5
Google Scholar
[11]
Q. Wang, d. wu, z. chen, Ag dendritic nanostructures for rapid detection of thiram based on surface-enhanced Raman scattering, Rsc Advances, 5 10.1039.C1035RA13080H.
DOI: 10.1039/c5ra13080h
Google Scholar
[12]
G.C. Schatz, M.A. Young, R.P.V. Duyne, Electromagnetic mechanism of SERS, (2006).
Google Scholar
[13]
H. Xu, J. Aizpurua, M. K?ll, P. Apell, Electromagnetic contributions to single-molecule sensitivity in surface-enhanced Raman scattering, Physical Review E, 62 4318-4324.
DOI: 10.1103/physreve.62.4318
Google Scholar
[14]
H. Zheng, D. Ni, Z. Yu, P. Liang, H. Chen, Fabrication of flower-like silver nanostructures for rapid detection of caffeine using surface enhanced Raman spectroscopy, Sensors & Actuators B Chemical, 231 (2016) 423-430.
DOI: 10.1016/j.snb.2016.03.045
Google Scholar
[15]
P.A.M. Dirac, The Quantum Theory of Emission and Absorption of Radiation, Proceedings of The Royal Society A, 114 (1927) 243-265.
Google Scholar
[16]
Y.S. Yamamoto, Y. Ozaki, T. Itoh, Recent progress and frontiers in the electromagnetic mechanism of surface-enhanced Raman scattering, Journal of Photochemistry & Photobiology C Photochemistry Reviews, 21 81-104.
DOI: 10.1016/j.jphotochemrev.2014.10.001
Google Scholar
[17]
L. Tong, T. Zhu, Z. Liu, Approaching the electromagnetic mechanism of surface-enhanced Raman scattering: from self-assembled arrays to individual gold nanoparticles, Chemical Society Reviews, 40 (2011).
DOI: 10.1039/c001054p
Google Scholar
[18]
Moskovits, Martin, Surface-enhanced spectroscopy, Reviews of Modern Physics, 57 783-826.
Google Scholar
[19]
M. Sun, S. Liu, M. Chen, H. Xu, Direct visual evidence for the chemical mechanism of surface enhanced resonance Raman scattering via charge transfer, 40 (2010) 1172-1177.
DOI: 10.1002/jrs.2255
Google Scholar
[20]
M. Sun, B. Wan, Y. Liu, Y. Jia, H. Xu, Chemical mechanism of surface-enhanced resonance Raman scattering via charge transfer in pyridine-Ag-2 complex, Journal of Raman Spectroscopy, 39 (2008) 402-408.
DOI: 10.1002/jrs.1839
Google Scholar
[21]
B.V. Parakhonskiy, Y.I. Svenskaya, A.М. Yashchenok, H.A. Fattah, O.A. Inozemtseva, F. Tessarolo, R. Antolini, D.A. Gorin, Size controlled hydroxyapatite and calcium carbonate particles: Synthesis and their application as templates for SERS platform, Colloids & Surfaces B Biointerfaces, 118 243-248.
DOI: 10.1016/j.colsurfb.2014.03.053
Google Scholar
[22]
G.-t. Xu, P. Liang, J. Huang, L. Wang, Q.-m. Dong, Y. Liu, Y.-j. Hua, Study on Sr3LiMgV3O12 : Eu3+ Single-Phase Phosphor for White LED, Spectroscopy and Spectral Analysis, 33 (2013) 945-948.
Google Scholar
[23]
M. Mandal, N.R. Jana, S. Kundu, S.K. Ghosh, M. Panigrahi, T. Pal, Synthesis of Aucore–Agshelltype bimetallic nanoparticles for single molecule detection in solution by SERS method, Journal of Nanoparticle Research, 6 53-61.
DOI: 10.1023/b:nano.0000023227.17871.0f
Google Scholar
[24]
W. Ji, B. Zhao, Y. Ozaki, Semiconductor materials in analytical applications of surface-enhanced Raman scattering, Journal of Raman Spectroscopy, 47 51-58.
DOI: 10.1002/jrs.4854
Google Scholar
[25]
L. Ma, Y. Huang, M. Hou, Z. Xie, Z. Zhang, Ag Nanorods Coated with Ultrathin TiO2 Shells as Stable and Recyclable SERS Substrates, Scientific Reports, 5 15442.
DOI: 10.1038/srep15442
Google Scholar
[26]
N. Zhang, L. Tong, J. Zhang, Graphene-Based Enhanced Raman Scattering toward Analytical Applications, Chemistry of Materials, 28 (2016).
DOI: 10.1021/acs.chemmater.6b02925
Google Scholar
[27]
M. Qi, X. Huang, Y. Zhou, L. Zhang, Y. Jin, Y. Peng, H. Jiang, S. Du, Label-free surface-enhanced Raman scattering strategy for rapid detection of penicilloic acid in milk products, Food Chemistry, 197 723-729.
DOI: 10.1016/j.foodchem.2015.11.014
Google Scholar
[28]
J. Tang, Q. Zhang, C. Zeng, S.-Q. Man, Preparation of large-area surface-enhanced Raman scattering active Ag and Ag/Au nanocomposite films, Applied Physics A, 111 1099-1105.
DOI: 10.1007/s00339-013-7568-8
Google Scholar
[29]
Q.W. Yong, S. Ma, Q.Q. Yang, X.J. Li, Size-dependent SERS detection of R6G by silver nanoparticles immersion-plated on silicon nanoporous pillar array, Applied Surface Science, 258 0-5885.
DOI: 10.1016/j.apsusc.2012.02.129
Google Scholar
[30]
G. Destefanis, M.T. Barge, A. Brugiapaglia, S. Tassone, The use of principal component analysis (PCA) to characterize beef, Meat Science, 56 (2000) 255-259.
DOI: 10.1016/s0309-1740(00)00050-4
Google Scholar
[31]
C.F. Fischer, A general multi-configuration Hartree-Fock program, Computer Physics Communications, 14 145-153.
DOI: 10.1016/0010-4655(78)90057-7
Google Scholar
[32]
S. Kallithraka, I.S. Arvanitoyannis, P. Kefalas, A. El-Zajouli, E. Soufleros, E. Psarra, Instrumental and sensory analysis of Greek wines; implementation of principal component analysis (PCA) for classification according to geographical origin, Food Chemistry, 73 501-514.
DOI: 10.1016/s0308-8146(00)00327-7
Google Scholar
[33]
J.P. Merrick, D. Moran, L. Radom, An Evaluation of Harmonic Vibrational Frequency Scale Factors, Journal of Physical Chemistry A, 111 11683-11700.
DOI: 10.1021/jp073974n
Google Scholar