Synthesis of Alloyed Au-Ag Nanospheres with Tunable Compositions and SERS Enhancement Effects

Article Preview

Abstract:

Surface-enhanced Raman scattering (SERS) has unique properties including highsensitivity, simple operation and non-destructiveness in trace detection; and the substrate will cast adirect impact upon the SERS signal. An everlasting topic has been focused on the preparation ofSERS substrates with controllable morphologies and hotspots. Herein, we reported a SERS substratewith alloyed Au-Ag nanospheres prepared via a reduction method of two-step seed growth method inliquid phase. TEM, SEM, Raman and UV-vis characterization have been employed to investigatemicro-morphology, composition, and SERS effects. Moreover, a quantitative detection model isestablished, and the R2 of fitting reaches as high as 0.982. Finally, the effect of different nAu/nAg molarratios on the SERS effect is investigated, with results showing that Raman enhancement has a goodrise at the very first beginning, but a drop later appears along with the decreasing nAu/nAg. The limit ofdetection (LOD) of R6G on Au-Ag nanosphere substrates has an initial increase, and a decreasefollows with the decreasing nAu/nAg ratios; the mechanism is also fully investigated. The preparationof particle-sized controllable Au-Ag nanomaterials helps provide a new highly enhanced SERSsubstrate.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volume 1026)

Pages:

197-207

Citation:

Online since:

April 2021

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2021 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] J. van der Geer, J.A.J. Hanraads, R.A. Lupton, The art of writing a scientific article, J. Sci. Commun. 163 (2000) 51-59. Reference to a book:.

Google Scholar

[2] W. Strunk Jr., E.B. White, The Elements of Style, third ed., Macmillan, New York, 1979. Reference to a chapter in an edited book:.

Google Scholar

[3] G.R. Mettam, L.B. Adams, How to prepare an electronic version of your article, in: B.S. Jones, R.Z. Smith (Eds.), Introduction to the Electronic Age, E-Publishing Inc., New York, 1999, pp.281-304.

Google Scholar

[4] R.J. Ong, J.T. Dawley and P.G. Clem: submitted to Journal of Materials Research (2003).

Google Scholar

[5] P.G. Clem, M. Rodriguez, J.A. Voigt and C.S. Ashley, U.S. Patent 6,231,666. (2001).

Google Scholar

[6] Information on http://www.weld.labs.gov.cn.

Google Scholar

[1] M.G. Albrecht, J.A. Creighton, Anomalously intense Raman spectra of pyridine at a silver electrode, Journal of the American Chemical Society, 99 5215-5217.

DOI: 10.1021/ja00457a071

Google Scholar

[2] A. Campion, P. Kambhampati, Surface-enhanced Raman scattering, 27 241-240.

Google Scholar

[3] M. Fleischmann, P.J. Hendra, A.J. McQuillan, Raman spectra of pyridine adsorbed at a silver electrode, Chemical Physics Letters, 26 163-166.

DOI: 10.1016/0009-2614(74)85388-1

Google Scholar

[4] D.L. Jeanmaire, R.P.V. Duyne, Surface Raman Spectroelectrochemistry: Part I. Heterocyclic, Aromatic, and Aliphatic Amines Adsorbed on the Anodized Silver Electrode.

Google Scholar

[5] P. Boolchand, M. Jin, D.I. Novita, S. Chakravarty, Raman Scattering as a Probe of Intermediate Phases in Glassy Networks, Journal of Raman Spectroscopy, 38 (2007).

DOI: 10.1002/jrs.1707

Google Scholar

[6] D. Kurouski, R.P. Van Duyne, <i>In Situ</i>\\r Detection and Identification of Hair Dyes Using Surface-Enhanced Raman Spectroscopy (SERS), Analytical Chemistry, 87 2901-2906.

DOI: 10.1021/ac504405u

Google Scholar

[7] R.A. Rakkesh, D. Durgalakshmi, S. Balakumar, Graphene based nanoassembly for simultaneous detection and degradation of harmful organic contaminants from aqueous solution, Rsc Advances, 6 (2016).

DOI: 10.1039/c6ra01784c

Google Scholar

[8] K. Rovina, P.P. Prabakaran, S. Siddiquee, S.M. Shaarani, Methods for the Analysis of Sunset Yellow FCF (E110) in Food and Beverage Products- A review, Trac Trends in Analytical Chemistry, S0165993615302326.

DOI: 10.1016/j.trac.2016.05.009

Google Scholar

[9] P.Â.S. Schlã¼Cker, Surface-Enhanced Raman Spectroscopy: Concepts and Chemical Applications, Angewandte Chemie International Edition, 53 (2014) 4756-4795.

DOI: 10.1002/anie.201205748

Google Scholar

[10] I.T. Shadi, B.Z. Chowdhry, M.J. Snowden, R. Withnall, Semi-quantitative analysis of indigo by surface enhanced resonance Raman spectroscopy (SERRS) using silver colloids, 59 (2003) 2201-2206.

DOI: 10.1016/s1386-1425(03)00063-5

Google Scholar

[11] Q. Wang, d. wu, z. chen, Ag dendritic nanostructures for rapid detection of thiram based on surface-enhanced Raman scattering, Rsc Advances, 5 10.1039.C1035RA13080H.

DOI: 10.1039/c5ra13080h

Google Scholar

[12] G.C. Schatz, M.A. Young, R.P.V. Duyne, Electromagnetic mechanism of SERS, (2006).

Google Scholar

[13] H. Xu, J. Aizpurua, M. K?ll, P. Apell, Electromagnetic contributions to single-molecule sensitivity in surface-enhanced Raman scattering, Physical Review E, 62 4318-4324.

DOI: 10.1103/physreve.62.4318

Google Scholar

[14] H. Zheng, D. Ni, Z. Yu, P. Liang, H. Chen, Fabrication of flower-like silver nanostructures for rapid detection of caffeine using surface enhanced Raman spectroscopy, Sensors & Actuators B Chemical, 231 (2016) 423-430.

DOI: 10.1016/j.snb.2016.03.045

Google Scholar

[15] P.A.M. Dirac, The Quantum Theory of Emission and Absorption of Radiation, Proceedings of The Royal Society A, 114 (1927) 243-265.

Google Scholar

[16] Y.S. Yamamoto, Y. Ozaki, T. Itoh, Recent progress and frontiers in the electromagnetic mechanism of surface-enhanced Raman scattering, Journal of Photochemistry & Photobiology C Photochemistry Reviews, 21 81-104.

DOI: 10.1016/j.jphotochemrev.2014.10.001

Google Scholar

[17] L. Tong, T. Zhu, Z. Liu, Approaching the electromagnetic mechanism of surface-enhanced Raman scattering: from self-assembled arrays to individual gold nanoparticles, Chemical Society Reviews, 40 (2011).

DOI: 10.1039/c001054p

Google Scholar

[18] Moskovits, Martin, Surface-enhanced spectroscopy, Reviews of Modern Physics, 57 783-826.

Google Scholar

[19] M. Sun, S. Liu, M. Chen, H. Xu, Direct visual evidence for the chemical mechanism of surface enhanced resonance Raman scattering via charge transfer, 40 (2010) 1172-1177.

DOI: 10.1002/jrs.2255

Google Scholar

[20] M. Sun, B. Wan, Y. Liu, Y. Jia, H. Xu, Chemical mechanism of surface-enhanced resonance Raman scattering via charge transfer in pyridine-Ag-2 complex, Journal of Raman Spectroscopy, 39 (2008) 402-408.

DOI: 10.1002/jrs.1839

Google Scholar

[21] B.V. Parakhonskiy, Y.I. Svenskaya, A.М. Yashchenok, H.A. Fattah, O.A. Inozemtseva, F. Tessarolo, R. Antolini, D.A. Gorin, Size controlled hydroxyapatite and calcium carbonate particles: Synthesis and their application as templates for SERS platform, Colloids & Surfaces B Biointerfaces, 118 243-248.

DOI: 10.1016/j.colsurfb.2014.03.053

Google Scholar

[22] G.-t. Xu, P. Liang, J. Huang, L. Wang, Q.-m. Dong, Y. Liu, Y.-j. Hua, Study on Sr3LiMgV3O12 : Eu3+ Single-Phase Phosphor for White LED, Spectroscopy and Spectral Analysis, 33 (2013) 945-948.

Google Scholar

[23] M. Mandal, N.R. Jana, S. Kundu, S.K. Ghosh, M. Panigrahi, T. Pal, Synthesis of Aucore–Agshelltype bimetallic nanoparticles for single molecule detection in solution by SERS method, Journal of Nanoparticle Research, 6 53-61.

DOI: 10.1023/b:nano.0000023227.17871.0f

Google Scholar

[24] W. Ji, B. Zhao, Y. Ozaki, Semiconductor materials in analytical applications of surface-enhanced Raman scattering, Journal of Raman Spectroscopy, 47 51-58.

DOI: 10.1002/jrs.4854

Google Scholar

[25] L. Ma, Y. Huang, M. Hou, Z. Xie, Z. Zhang, Ag Nanorods Coated with Ultrathin TiO2 Shells as Stable and Recyclable SERS Substrates, Scientific Reports, 5 15442.

DOI: 10.1038/srep15442

Google Scholar

[26] N. Zhang, L. Tong, J. Zhang, Graphene-Based Enhanced Raman Scattering toward Analytical Applications, Chemistry of Materials, 28 (2016).

DOI: 10.1021/acs.chemmater.6b02925

Google Scholar

[27] M. Qi, X. Huang, Y. Zhou, L. Zhang, Y. Jin, Y. Peng, H. Jiang, S. Du, Label-free surface-enhanced Raman scattering strategy for rapid detection of penicilloic acid in milk products, Food Chemistry, 197 723-729.

DOI: 10.1016/j.foodchem.2015.11.014

Google Scholar

[28] J. Tang, Q. Zhang, C. Zeng, S.-Q. Man, Preparation of large-area surface-enhanced Raman scattering active Ag and Ag/Au nanocomposite films, Applied Physics A, 111 1099-1105.

DOI: 10.1007/s00339-013-7568-8

Google Scholar

[29] Q.W. Yong, S. Ma, Q.Q. Yang, X.J. Li, Size-dependent SERS detection of R6G by silver nanoparticles immersion-plated on silicon nanoporous pillar array, Applied Surface Science, 258 0-5885.

DOI: 10.1016/j.apsusc.2012.02.129

Google Scholar

[30] G. Destefanis, M.T. Barge, A. Brugiapaglia, S. Tassone, The use of principal component analysis (PCA) to characterize beef, Meat Science, 56 (2000) 255-259.

DOI: 10.1016/s0309-1740(00)00050-4

Google Scholar

[31] C.F. Fischer, A general multi-configuration Hartree-Fock program, Computer Physics Communications, 14 145-153.

DOI: 10.1016/0010-4655(78)90057-7

Google Scholar

[32] S. Kallithraka, I.S. Arvanitoyannis, P. Kefalas, A. El-Zajouli, E. Soufleros, E. Psarra, Instrumental and sensory analysis of Greek wines; implementation of principal component analysis (PCA) for classification according to geographical origin, Food Chemistry, 73 501-514.

DOI: 10.1016/s0308-8146(00)00327-7

Google Scholar

[33] J.P. Merrick, D. Moran, L. Radom, An Evaluation of Harmonic Vibrational Frequency Scale Factors, Journal of Physical Chemistry A, 111 11683-11700.

DOI: 10.1021/jp073974n

Google Scholar