Correlation among Microstructure, Texture, and Properties along the Thickness Direction in As-Hot-Rolled and As-Solution-Quenched Al7055 Thick Plates

Article Preview

Abstract:

Both microstructure inhomogeneity and mechanical property diversity along the thickness direction in rolled thick aluminum plates have been considered to have a remarkable impact on the performance and properties of the products made from the plates. In this study, scanning electron microscopy (SEM) and electron backscattered diffraction (EBSD) characterizations of microstructure and texture types along the thickness directions of Al7055 thick plate specimens prepared using two conditions, hot-rolling and solution-quenching, were performed. To examine the mechanical properties, uniaxial tensile tests were also carried out on specimens machined from both types of thick plates, using a layered strategy along the thickness direction. The results indicate that both the microstructure and mechanical properties are inhomogeneous under the two conditions. Furthermore, it is evident that there is a hereditary relationship between the mechanical properties of the two plates—areas with higher yield strength in the as-hot-rolled plate correspond to areas with the higher yield strength in the as-solution-quenched plate

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volume 1026)

Pages:

65-73

Citation:

Online since:

April 2021

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2021 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] W. Miller, L. Zhuang, J. Bottema, A. Wittebrood, P. De Smet, A. Haszler, A. Vieregge, Recent development in aluminum alloys for the automotive industry, Materials Science and Engineering: A 280 (1) (2000) 37-49.

DOI: 10.1016/s0921-5093(99)00653-x

Google Scholar

[2] J. Hirsch, Recent development in aluminum for automotive applications, Transactions of Nonferrous Metals Society of China 24 (7) (2014) 1995-2002.

DOI: 10.1016/s1003-6326(14)63305-7

Google Scholar

[3] K. Seong-Jong, J. Seok-Ki, H. Min-Su, P. Jae-Cheul, J.-Y. Jeong, S.-O. Chong, Mechanical and electrochemical characteristics in sea water of 5052-O aluminum alloy for ship, Transactions of Nonferrous Metals Society of China 23 (3) (2013) 636-641.

DOI: 10.1016/s1003-6326(13)62510-8

Google Scholar

[4] M. Bethencourt, F. Botana, M. Cauqui, M. Marcos, M. Rodrıguez, J. Rodrıguez-Izquierdo, Protection against corrosion in marine environments of AA5083 Al-Mg alloy by lanthanide chlorides, Journal of alloys and compounds 250 (1-2) (1997) 455-460.

DOI: 10.1016/s0925-8388(96)02826-5

Google Scholar

[5] Y. Sakai, Current state and the future of aluminum alloy applications of rolling stock, Journal of Japan Institute of Light Metals 55 (11) (2006) 584-587.

Google Scholar

[6] E. A. Starke Jr, J. T. Staley, Application of modern aluminum alloys to aircraft, in: Fundamentals of aluminum metallurgy, Elsevier, 2011, p.747–783.

DOI: 10.1533/9780857090256.3.747

Google Scholar

[7] J. Immarigeon, R. Holt, A. Koul, L. Zhao, W. Wallace, J. Beddoes, Lightweight materials for aircraft applications, Materials Characterization 35 (1) (1995) 41-67.

DOI: 10.1016/1044-5803(95)00066-6

Google Scholar

[8] T. Dursun, C. Soutis, Recent developments in advanced aircraft aluminum alloys, Materials & Design (1980-2015) 56 (2014) 862-871.

DOI: 10.1016/j.matdes.2013.12.002

Google Scholar

[9] J. C. Williams, E. A. Starke Jr, Progress in structural materials for aerospace systems, Acta Materialia 51 (19) (2003) 5775-5799.

DOI: 10.1016/j.actamat.2003.08.023

Google Scholar

[10] A. Heinz, A. Haszler, C. Keidel, S. Moldenhauer, R. Benedictus, W. Miller, Recent development in aluminum alloys for aerospace applications, Materials Science and Engineering: A 280 (1) (2000) 102-107.

DOI: 10.1016/s0921-5093(99)00674-7

Google Scholar

[11] J. Zhi-bang, S. Dian-cheng, G. Yun-hua, Global advanced process technology of aluminum alloy plates for aircraft and aerospace, Light Alloy Fabrication Technology (2005).

Google Scholar

[12] T. S. Srivatsan, S. Sriram, D. Veeraraghavan, V. Vasudevan, Microstructure, tensile deformation and fracture behavior of aluminum alloy 7055, Journal of materials science 32 (11) (1997) 2883-2894.

DOI: 10.1023/a:1018676501368

Google Scholar

[13] C. Mondal, A. Mukhopadhyay, On the nature of T (Al2Mg3Zn3) and S (Al2CuMg) phases present in as-cast and annealed 7055 aluminum alloy, Materials Science and Engineering: A 391 (1-2) (2005) 367-376.

DOI: 10.1016/j.msea.2004.09.013

Google Scholar

[14] L. Chen, Z.H. Li, S.H. Huang, X.W. Li, H.W. Yan, H.W. Liu, Y.A. Zhang, B.Q. Xiong, Microstructure evolution of 7055 aluminum alloy during multi-pass hot deformation and solution treatment process, Transactions of Materials and Heat Treatment 36 (12) (2015) 55-60.

Google Scholar

[15] J.Z. Chen, Z. Liang, S.J. Yang, S.L. Dai, Effects of precipitates on fatigue crack growth rate of aa 7055 aluminum alloy, Transactions of Nonferrous Metals Society of China 20 (12) (2010) 2209-2214.

DOI: 10.1016/s1003-6326(10)60630-9

Google Scholar

[16] J. Chen, L. Zhen, W. Shao, S. Dai, Y. Cui, Through-thickness texture gradient in AA7055 aluminum alloy, Materials Letters 62 (1) (2008) 88-90.

DOI: 10.1016/j.matlet.2007.04.074

Google Scholar

[17] C. Fuguan, Z. Gang, T. Ni, L. I. Ruifeng, Inhomogeneity of properties of 7150-T7751 aluminum alloy thick plate, Chinese Journal of Materials Research 27 (2) (2013) 144-148.

Google Scholar

[18] Zeng. Su-min, Disciplines of multiple factors affecting solution treating of aluminum alloy, Nonferrous Metals 3(1999).

Google Scholar

[19] Li. Pei-yue, Xiong Bai-qing, Zhang Yong-an, Li. Zhi-hui, Temperature variation and solution treatment of high strength AA7050, Transactions of Nonferrous Metals Society of China 22 (3) (2012) 546-554.

DOI: 10.1016/s1003-6326(11)61212-0

Google Scholar

[20] Chang. Jiang-yu, Chen. Song-yi, Chen. Kang-hua, Zhou. Liang, Yuan. Ding-ling, Numerical simulation and experimental investigation of rolling deformation inhomogeneity of 7056 aluminum alloy thick plate, Journal of Central South University (Science and Technology) (2018).

Google Scholar

[21] S. Hong, H. Jeong, C. Choi, D. Lee, Deformation and recrystallization textures of surface layer of copper sheet, Materials Science and Engineering A-structural Materials Properties Microstructure and Processing 229 (1997)174-181.

DOI: 10.1016/s0921-5093(96)10818-2

Google Scholar

[22] O. V. Mishin, B. Bay, D. J. Jensen, Through-thickness texture gradients in cold-rolled aluminum, Metallurgical and Materials Transactions A-physical Metallurgy and Materials Science 31 (6) (2000) 1653-1662.

DOI: 10.1007/s11661-000-0175-2

Google Scholar

[23] Zhang. Xin-ming, Han. Nian-mei, Liu. Sheng-dan, Song. Feng-xuan, Zeng. Rui-lin, Huang. Le-yu, Inhomogeneity of texture, tensile property and fracture toughness of 7050 aluminum alloy thick plate, The Chinese Journal of Nonferrous Metals 20 (2) (2010) 202-208.

Google Scholar

[24] Zhang. Zhi-hui, Zuo Yu-ting., Liu. Shu-feng, Study on microstructure, mixture and tensile property of 7B04 aluminum alloy plate along thickness direction, Journal of Chinese Electron Microscopy Society (2011).

Google Scholar

[25] Wang. Shu-ming, Wang. Chao-qun, Du. Zhi-wei, Su. Ze-ming, Texture analysis for 7B04 Al alloy plate along thickness direction, Chinese Journal of Rare Metals 36 (3) (2012) 363-367.

Google Scholar

[26] M. A. Meyersm, E. Ashworth, A model for the effect of grain size on the yield stress of metals, Philosophical Magazine 46 (5) (1982) 737-759.

DOI: 10.1080/01418618208236928

Google Scholar

[27] K. K. Cho, Y. Chung, C. Lee, S. I. Kwun, M. Shin, Effects of grain shape and texture on the yield strength anisotropy of Al-Li alloy sheet, Scripta Materialia 40 (6) (1999) 651-657.

DOI: 10.1016/s1359-6462(98)00481-3

Google Scholar

[28] Chen. Jun-zhou, Zhen. Liang, Dai. Sheng-long, Shao. Wen-zhu, Zhang Bao-you, Effects of grain shape and texture on the through-thickness yield strength of AA7055 aluminum alloy plate, Rare Metal Materials and Engineering 37 (11) (2008).

Google Scholar