[1]
M.X. Guo, J.Q. Du, C.H. Zheng, et al. Influence of Zn contents on precipitation and corrosion of Al-Mg-Si-Cu-Zn alloys for automotive applications, J. Alloys Compd. 778 (2019) 256-270.
DOI: 10.1016/j.jallcom.2018.11.146
Google Scholar
[2]
M. Torsæter, H.S. Hasting, W. Lefebvre, et al. The influence of composition and natural aging on clustering during preaging in Al-Mg-Si alloys, J. Appl. Phys. 108 (2010) 1-9.
DOI: 10.1063/1.3481090
Google Scholar
[3]
C.D. Marioara, S.J. Andersen, H.W. Zandbergen, et al. The influence of alloy composition on precipitates of the Al-Mg-Si system, Metall. Mater. Trans. A, 36 (2005) 691-702.
DOI: 10.1007/s11661-005-0185-1
Google Scholar
[4]
S. Zhu, Z.H. Li, L.Z. Yan, et al. Effects of Zn addition on the age hardening behavior and precipitation evolution of an Al-Mg-Si-Cu alloy, Mater. Charact. 145 (2018) 258-267.
DOI: 10.1016/j.matchar.2018.08.051
Google Scholar
[5]
T. Saito, F.J.H. Ehlers, W. Lefebvre, et al. HAADF-STEM and DFT investigations of the Zn-containing β'' phase in Al-Mg-Si alloys, Acta Mater. 78 (2014) 245-253.
DOI: 10.1016/j.actamat.2014.06.055
Google Scholar
[6]
K. Li, B. Armand, M. Song, et al. Atomistic structure of Cu-containing β" precipitates in an Al-Mg-Si-Cu alloy, Scr. Mater. 75 (2014) 86-89.
DOI: 10.1016/j.scriptamat.2013.11.030
Google Scholar
[7]
M.W. Zandbergen, A. Cerezo, G.D.W. Smith. Study of precipitation in Al-Mg-Si Alloys by atom probe tomography II. Influence of Cu additions, Acta Mater. 101 (2015) 149-158.
DOI: 10.1016/j.actamat.2015.08.018
Google Scholar
[8]
L.P. Ding, Z.H. Jia, J.F. Nie, et al. The structural and compositional evolution of precipitates in Al-Mg-Si-Cu alloy, Acta Mater. 145 (2017) 437-450.
DOI: 10.1016/j.actamat.2017.12.036
Google Scholar
[9]
M.A. van Huis, J.H. Chen, H.W. Zandbergen, et al. Phase stability and structural relations of nanometer-sized, matrix-embedded precipitate phases in Al-Mg-Si alloys in the late stages of evolution, Acta Mater. 54 (2006) 2945-2955.
DOI: 10.1016/j.actamat.2006.02.034
Google Scholar
[10]
C. Ravi, C. Wolverton. First-principles study of crystal structure and stability of Al-Mg-Si-(Cu) precipitates, Acta Mater. 52 (2004) 4213-4227.
DOI: 10.1016/j.actamat.2004.05.037
Google Scholar
[11]
W. Xiao, J.W. Wang, L. Sun, et al. Theoretical investigation of the strengthening mechanism and precipitation evolution in high strength Al-Zn-Mg alloys, Phys. Chem. Chem. Phys. 20 (2018) 13616-13622.
DOI: 10.1039/c8cp01820k
Google Scholar
[12]
M.A. van Huis, J.H. Chen, M.H.F. Sluiter, et al. Phase stability and structural features of matrix-embedded hardening precipitates in Al-Mg-Si alloys in the early stages of evolution, Acta Mater. 55 (2007) 2183-2199.
DOI: 10.1016/j.actamat.2006.11.019
Google Scholar
[13]
H.W. Zandbergen, S.J. Andersen, J. Jansen. Structure Determination of Mg5Si6 Particles in Al by Dynamic Electron Diffraction Studies, Science, 277 (1997) 1221-1225.
DOI: 10.1126/science.277.5330.1221
Google Scholar
[14]
C.D. MARIOARA, S.J. ANDERSEN, J. JANSEN, et al. ATOMIC MODEL FOR GP-ZONES IN A 6082 Al-Mg-Si SYSTEM, Acta Mater. 49 (2001) 321-328.
DOI: 10.1016/s1359-6454(00)00302-5
Google Scholar
[15]
K. Matsuda, T. Naoi, K. Fujii, et al. Crystal structure of the β" phase in an Al-l.0mass%Mg2Si-0.4mass%Si alloy, Mater. Sci. Eng., A, 262 (1999) 232-237.
DOI: 10.1016/s0921-5093(98)00962-9
Google Scholar
[16]
H.S. Hasting, A.G. Frøseth, S.J. Andersen, et al. Composition of β" precipitates in Al-Mg-Si alloys by atom probe tomography and first principles calculations, Appl. Phys. 106 (2009) 123527.
DOI: 10.1063/1.3269714
Google Scholar
[17]
S.J. ANDERSEN, H.W. ZANDBERGEN, J. JANSEN, et al. THE CRYSTAL STRUCTURE OF THE β" PHASE IN Al-Mg-Si ALLOYS, Acta Metall. 46 (1998) 3283-3298.
DOI: 10.1016/s1359-6454(97)00493-x
Google Scholar
[18]
L.P. Ding, Z.H. Jia, Z.Q. Zhang, et al. The natural aging and precipitation hardening behaviour of Al-Mg-Si-Cu alloys with different Mg/Si ratios and Cu additions, Mater. Sci. Eng., A, 627 (2015) 119-126.
DOI: 10.1016/j.msea.2014.12.086
Google Scholar