[1]
W.S. Miller, L. Zhuang, J. Bottema, et al. Recent development in aluminium alloys for the automotive industry, Mater. Sci. Eng. A 280 (2000) 37-49.
Google Scholar
[2]
T. Sakurai, The latest trends in aluminum alloy sheets for automotive body panels, Kobelco Technol. Rev. 28 (2008) 22-28.
Google Scholar
[3]
J. Hirsch, Recent development in aluminium for automotive applications, Trans. Nonferrous Met. Soc. China 24 (2014) 1995-2002.
Google Scholar
[4]
X. Wang, T. Shi, H. Wang, et al. Effects of strain rate on mechanical properties, microstructure and texture of Al-Mg-Si-Cu alloy under tensile loading, Trans. Nonferrous Met. Soc. China 30 (2020) 27-40.
DOI: 10.1016/s1003-6326(19)65177-0
Google Scholar
[5]
Y.Y. Zheng, B.H. Luo, Z.H. Bai, et al. Study of the Precipitation Hardening Behaviour and Intergranular Corrosion of Al-Mg-Si Alloys with Differing Si Contents, Metals 7 (2017) 387.
DOI: 10.3390/met7100387
Google Scholar
[6]
H. Fröck, B. Milkereit, P. Wiechmann, et al. Influence of Solution-Annealing Parameters on the Continuous Cooling Precipitation of Aluminum Alloy 6082, Metals 8 (2018) 265.
DOI: 10.3390/met8040265
Google Scholar
[7]
H.W. Zandbergen, S.J. Andersen, J. Jansen, Structure determination of Mg5Si6 particles in Al by dynamic electron diffraction studies, Science 277 (1997) 1221-1225.
DOI: 10.1126/science.277.5330.1221
Google Scholar
[8]
G. Gao, C. He, Y. Li, Influence of different solution methods on microstructure, precipitation behavior and mechanical properties of Al-Mg-Si alloy, Trans. Nonferrous Met. Soc. China 28 (2018) 839-847.
DOI: 10.1016/s1003-6326(18)64717-x
Google Scholar
[9]
O. Engler, C. Schäfer, O.R. Myhr, Effect of natural ageing and pre-straining on strength and anisotropy in aluminium alloy AA6016, Mater. Sci. Eng. A 639 (2015) 65-74.
DOI: 10.1016/j.msea.2015.04.097
Google Scholar
[10]
C.H. Liu, Y.X. Lai, J.H. Chen, et al. Natural-aging-induced reversal of the precipitation pathways in an Al-Mg-Si alloy, Scr. Mater. 115 (2016) 150-154.
DOI: 10.1016/j.scriptamat.2015.12.027
Google Scholar
[11]
G.H. Tao, C.H. Liu, J.H. Chen, et al. The influence of Mg/Si ratio on the negative natural aging effect in Al-Mg-Si-Cu alloys, Mater. Sci. Eng. A 642 (2015) 241-248.
DOI: 10.1016/j.msea.2015.06.090
Google Scholar
[12]
Y. Birol, Pre-straining to improve the bake hardening response of a twin-roll cast Al-Mg-Si alloy, Scr. Mater. 52 (2005) 169-173.
DOI: 10.1016/j.scriptamat.2004.10.001
Google Scholar
[13]
L. Ding, Z. Jia, Y. Liu, et al. The influence of Cu addition and pre-straining on the natural aging and bake hardening response of Al-Mg-Si alloys, J. Alloys Compd. 688 (2016) 362-367.
DOI: 10.1016/j.jallcom.2016.07.066
Google Scholar
[14]
A. Serizawa, S. Hirosawa, T. Sato, Three-dimensional atom probe characterization of nanoclusters responsible for multistep aging behavior of an Al-Mg-Si alloy, Metall. Mater. Trans. A 39 (2008) 243-251.
DOI: 10.1007/s11661-007-9438-5
Google Scholar
[15]
S. Rajakumarc, C. Muralidharanv, V. Balasubramanian, Establishing empirical relationships to predict grain size and tensile strength of friction stir welded AA 6061-T6 aluminium alloy joints, Nonferrous Met. Soc. China 20 (2010) 1863-1872.
DOI: 10.1016/s1003-6326(09)60387-3
Google Scholar
[16]
A.V. Mikhaylovskaya, A.A. Kishchik, A.D. Kotov, et al. Precipitation behavior and high strain rate superplasticity in a novel fine-grained aluminum based alloy, Mater. Sci. Eng. A 760 (2019) 37-46.
DOI: 10.1016/j.msea.2019.05.099
Google Scholar
[17]
E. Thronsen, C.D. Marioara, J.K. Sunde, et al. The effect of heavy deformation on the precipitation in an Al-1.3Cu-1.0Mg-0.4Si wt.% alloy, Mater. Des. 186 (2020) 108203.
DOI: 10.1016/j.matdes.2019.108203
Google Scholar
[18]
W. Yang, M. Wang, R. Zhang, et al. The diffraction patterns from β" precipitates in 12 orientations in Al-Mg-Si alloy, Scr. Mater. 62 (2010) 705-708.
DOI: 10.1016/j.scriptamat.2010.01.039
Google Scholar
[19]
J.H. Chen, E. Costan, M.A. Van Huis, et al. Atomic pillar-based nanoprecipitates strengthen AlMgSi alloys, Science 312 (2006) 416-419.
DOI: 10.1126/science.1124199
Google Scholar
[20]
J.K. Sunde, C.D. Marioara, A.T.J. van Helvoort, et al. The evolution of precipitate crystal structures in an Al-Mg-Si(-Cu) alloy studied by a combined HAADF-STEM and SPED approach, Mater. Char. 142 (2018) 458-469.
DOI: 10.1016/j.matchar.2018.05.031
Google Scholar
[21]
L. Ding, Y. He, Z. Wen, et al. Optimization of the pre-aging treatment for an AA6022 alloy at various temperatures and holding times, J. Alloys Compd. 647 (2015) 238-244.
DOI: 10.1016/j.jallcom.2015.05.188
Google Scholar
[22]
G. Gao, Y. Li, Z. Wang, et al. Study of retrogression response in naturally and multi-step aged Al-Mg-Si automotive sheets, J. Alloys Compd. 753 (2018) 457-464.
DOI: 10.1016/j.jallcom.2018.04.198
Google Scholar
[23]
C. Zhang, C. Wang, R. Guo, et al. Investigation of dynamic recrystallization and modeling of microstructure evolution of an Al-Mg-Si aluminum alloy during high-temperature deformation, J. Alloys Compd. 773 (2019) 59-70.
DOI: 10.1016/j.jallcom.2018.09.263
Google Scholar
[24]
Q. Li, H. Lu, D.Y. Li, Effect of recovery treatment on the wear resistance of surface hammered AZ31 Mg alloy, Wear 426-427 (2019) 981-988.
DOI: 10.1016/j.wear.2019.01.086
Google Scholar
[25]
Y. Yan, Z. Liang, J. Banhart, Influence of pre-straining and pre-ageing on the age-hardening response of Al-Mg-Si alloys, Mater. Sci. Forum 794-796 (2014) 903-908.
DOI: 10.4028/www.scientific.net/msf.794-796.903
Google Scholar
[26]
D. Yin, Q. Xiao, Y.Chen, et al. Effect of natural ageing and pre-straining on the hardening behaviour and microstructural response during artificial ageing of an Al-Mg-Si-Cu alloy, Mater. Des. 95 (2016) 329-339.
DOI: 10.1016/j.matdes.2016.01.119
Google Scholar
[27]
Y. Birol, Impact of pre-ageing on age hardening response of twin-belt cast AlMg1SiCu sheet, J. Mater. Sci. 45 (2010) 6727-6731.
DOI: 10.1007/s10853-010-4766-z
Google Scholar
[28]
Y.N. Kwon, Y.S. Lee, J.H. Lee, Deformation behavior of Al-Mg-Si alloy at the elevated temperature, J. Mater. Process Tech. 187-188 (2007) 533-536.
DOI: 10.1016/j.jmatprotec.2006.11.207
Google Scholar
[29]
A. erizawa, T. Sato, W.J. Poole, The characterization of dislocation-nanocluster interactions in Al-Mg-Si(-Cu/Ag) alloys, Philos. Mag. Lett. 90 (2010) 279-287.
DOI: 10.1080/09500831003633231
Google Scholar
[30]
Z. Jia, L. Ding, Y. Weng, et al. Effects of high temperature pre-straining on natural aging and bake hardening response of Al-Mg-Si alloys, Nonferrous Met. Soc. China 26 (2016) 924-929.
DOI: 10.1016/s1003-6326(16)64188-2
Google Scholar
[31]
Y. Aruga, M. Kozuka, Y. Takaki, et al. Effects of natural aging after pre-aging on clustering and bake-hardening behavior in an Al-Mg-Si alloy, Scr. Mater. 116 (2016) 82-86.
DOI: 10.1016/j.scriptamat.2016.01.019
Google Scholar
[32]
P.H. Ninive, A. Strandlie, S. Gulbrandsen-Dahl, et al. Detailed atomistic insight into the β" phase in Al-Mg-Si alloys, Acta Mater. 69 (2014) 126-134.
DOI: 10.1016/j.actamat.2014.01.052
Google Scholar
[33]
K. Misumi, K. Kaneko, T. Nishiyama, et al. Three-dimensional characterization of interaction between β" precipitate and dislocation in Al-Mg-Si alloy, J. Alloys Compd. 600 (2014) 29-33.
DOI: 10.1016/j.jallcom.2014.02.059
Google Scholar
[34]
W. Yi, Z. Yu, X. Xiao, et al. Superior mechanical properties induced by the interaction between dislocations and precipitates in the electro-pulsing treated Al-Mg-Si alloys, Mater. Sci. Eng. A 735 (2018) 154-161.
DOI: 10.1016/j.msea.2018.08.029
Google Scholar
[35]
Y. Takaki, T. Masuda, E. Kobayashi, et al. Effects of Natural Aging on Bake Hardening Behavior of Al-Mg-Si Alloys with Multi-Step Aging Process, Mater. Trans. 55 (2014) 1257-1265.
DOI: 10.2320/matertrans.l-m2014827
Google Scholar