Effect of Combined Pre-Straining and Pre-Aging on the Precipitation Behavior and Age Hardening Response for Al-Mg-Si Alloys

Article Preview

Abstract:

Pre-strain (PS) and pre-aging (PA) treatments are often applied during the preparation of Al-Mg-Si automotive aluminum alloy. In this study, the effect of combined PS and PA on the precipitation behavior and age hardening response for Al-Mg-Si alloys was investigated through scanning electron microscopy (SEM), transmission electron microscopy (TEM), tensile test, Vickers hardness test, and differential scanning calorimetry (DSC). It was found that the dislocations introduced by PS treatment and the cluster (2) formed during PA treatment effectively inhibited the cluster (1), which further strengthened the inhibition of natural aging hardening at room temperature (RT). The strength increment of the alloys was kept below 10.0 MPa during two weeks RT storage. The dislocations provided heterogeneous nucleation for the precipitates forming and the cluster (2) transformed into β″ strengthening phase during bake hardening treatment. With the acceleration response of the dislocations and the cluster (2), the age hardening response of Al-Mg-Si alloys obviously improved with the denser and larger β″ strengthening phase formed.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volume 1026)

Pages:

74-83

Citation:

Online since:

April 2021

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2021 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] W.S. Miller, L. Zhuang, J. Bottema, et al. Recent development in aluminium alloys for the automotive industry, Mater. Sci. Eng. A 280 (2000) 37-49.

Google Scholar

[2] T. Sakurai, The latest trends in aluminum alloy sheets for automotive body panels, Kobelco Technol. Rev. 28 (2008) 22-28.

Google Scholar

[3] J. Hirsch, Recent development in aluminium for automotive applications, Trans. Nonferrous Met. Soc. China 24 (2014) 1995-2002.

Google Scholar

[4] X. Wang, T. Shi, H. Wang, et al. Effects of strain rate on mechanical properties, microstructure and texture of Al-Mg-Si-Cu alloy under tensile loading, Trans. Nonferrous Met. Soc. China 30 (2020) 27-40.

DOI: 10.1016/s1003-6326(19)65177-0

Google Scholar

[5] Y.Y. Zheng, B.H. Luo, Z.H. Bai, et al. Study of the Precipitation Hardening Behaviour and Intergranular Corrosion of Al-Mg-Si Alloys with Differing Si Contents, Metals 7 (2017) 387.

DOI: 10.3390/met7100387

Google Scholar

[6] H. Fröck, B. Milkereit, P. Wiechmann, et al. Influence of Solution-Annealing Parameters on the Continuous Cooling Precipitation of Aluminum Alloy 6082, Metals 8 (2018) 265.

DOI: 10.3390/met8040265

Google Scholar

[7] H.W. Zandbergen, S.J. Andersen, J. Jansen, Structure determination of Mg5Si6 particles in Al by dynamic electron diffraction studies, Science 277 (1997) 1221-1225.

DOI: 10.1126/science.277.5330.1221

Google Scholar

[8] G. Gao, C. He, Y. Li, Influence of different solution methods on microstructure, precipitation behavior and mechanical properties of Al-Mg-Si alloy, Trans. Nonferrous Met. Soc. China 28 (2018) 839-847.

DOI: 10.1016/s1003-6326(18)64717-x

Google Scholar

[9] O. Engler, C. Schäfer, O.R. Myhr, Effect of natural ageing and pre-straining on strength and anisotropy in aluminium alloy AA6016, Mater. Sci. Eng. A 639 (2015) 65-74.

DOI: 10.1016/j.msea.2015.04.097

Google Scholar

[10] C.H. Liu, Y.X. Lai, J.H. Chen, et al. Natural-aging-induced reversal of the precipitation pathways in an Al-Mg-Si alloy, Scr. Mater. 115 (2016) 150-154.

DOI: 10.1016/j.scriptamat.2015.12.027

Google Scholar

[11] G.H. Tao, C.H. Liu, J.H. Chen, et al. The influence of Mg/Si ratio on the negative natural aging effect in Al-Mg-Si-Cu alloys, Mater. Sci. Eng. A 642 (2015) 241-248.

DOI: 10.1016/j.msea.2015.06.090

Google Scholar

[12] Y. Birol, Pre-straining to improve the bake hardening response of a twin-roll cast Al-Mg-Si alloy, Scr. Mater. 52 (2005) 169-173.

DOI: 10.1016/j.scriptamat.2004.10.001

Google Scholar

[13] L. Ding, Z. Jia, Y. Liu, et al. The influence of Cu addition and pre-straining on the natural aging and bake hardening response of Al-Mg-Si alloys, J. Alloys Compd. 688 (2016) 362-367.

DOI: 10.1016/j.jallcom.2016.07.066

Google Scholar

[14] A. Serizawa, S. Hirosawa, T. Sato, Three-dimensional atom probe characterization of nanoclusters responsible for multistep aging behavior of an Al-Mg-Si alloy, Metall. Mater. Trans. A 39 (2008) 243-251.

DOI: 10.1007/s11661-007-9438-5

Google Scholar

[15] S. Rajakumarc, C. Muralidharanv, V. Balasubramanian, Establishing empirical relationships to predict grain size and tensile strength of friction stir welded AA 6061-T6 aluminium alloy joints, Nonferrous Met. Soc. China 20 (2010) 1863-1872.

DOI: 10.1016/s1003-6326(09)60387-3

Google Scholar

[16] A.V. Mikhaylovskaya, A.A. Kishchik, A.D. Kotov, et al. Precipitation behavior and high strain rate superplasticity in a novel fine-grained aluminum based alloy, Mater. Sci. Eng. A 760 (2019) 37-46.

DOI: 10.1016/j.msea.2019.05.099

Google Scholar

[17] E. Thronsen, C.D. Marioara, J.K. Sunde, et al. The effect of heavy deformation on the precipitation in an Al-1.3Cu-1.0Mg-0.4Si wt.% alloy, Mater. Des. 186 (2020) 108203.

DOI: 10.1016/j.matdes.2019.108203

Google Scholar

[18] W. Yang, M. Wang, R. Zhang, et al. The diffraction patterns from β" precipitates in 12 orientations in Al-Mg-Si alloy, Scr. Mater. 62 (2010) 705-708.

DOI: 10.1016/j.scriptamat.2010.01.039

Google Scholar

[19] J.H. Chen, E. Costan, M.A. Van Huis, et al. Atomic pillar-based nanoprecipitates strengthen AlMgSi alloys, Science 312 (2006) 416-419.

DOI: 10.1126/science.1124199

Google Scholar

[20] J.K. Sunde, C.D. Marioara, A.T.J. van Helvoort, et al. The evolution of precipitate crystal structures in an Al-Mg-Si(-Cu) alloy studied by a combined HAADF-STEM and SPED approach, Mater. Char. 142 (2018) 458-469.

DOI: 10.1016/j.matchar.2018.05.031

Google Scholar

[21] L. Ding, Y. He, Z. Wen, et al. Optimization of the pre-aging treatment for an AA6022 alloy at various temperatures and holding times, J. Alloys Compd. 647 (2015) 238-244.

DOI: 10.1016/j.jallcom.2015.05.188

Google Scholar

[22] G. Gao, Y. Li, Z. Wang, et al. Study of retrogression response in naturally and multi-step aged Al-Mg-Si automotive sheets, J. Alloys Compd. 753 (2018) 457-464.

DOI: 10.1016/j.jallcom.2018.04.198

Google Scholar

[23] C. Zhang, C. Wang, R. Guo, et al. Investigation of dynamic recrystallization and modeling of microstructure evolution of an Al-Mg-Si aluminum alloy during high-temperature deformation, J. Alloys Compd. 773 (2019) 59-70.

DOI: 10.1016/j.jallcom.2018.09.263

Google Scholar

[24] Q. Li, H. Lu, D.Y. Li, Effect of recovery treatment on the wear resistance of surface hammered AZ31 Mg alloy, Wear 426-427 (2019) 981-988.

DOI: 10.1016/j.wear.2019.01.086

Google Scholar

[25] Y. Yan, Z. Liang, J. Banhart, Influence of pre-straining and pre-ageing on the age-hardening response of Al-Mg-Si alloys, Mater. Sci. Forum 794-796 (2014) 903-908.

DOI: 10.4028/www.scientific.net/msf.794-796.903

Google Scholar

[26] D. Yin, Q. Xiao, Y.Chen, et al. Effect of natural ageing and pre-straining on the hardening behaviour and microstructural response during artificial ageing of an Al-Mg-Si-Cu alloy, Mater. Des. 95 (2016) 329-339.

DOI: 10.1016/j.matdes.2016.01.119

Google Scholar

[27] Y. Birol, Impact of pre-ageing on age hardening response of twin-belt cast AlMg1SiCu sheet, J. Mater. Sci. 45 (2010) 6727-6731.

DOI: 10.1007/s10853-010-4766-z

Google Scholar

[28] Y.N. Kwon, Y.S. Lee, J.H. Lee, Deformation behavior of Al-Mg-Si alloy at the elevated temperature, J. Mater. Process Tech. 187-188 (2007) 533-536.

DOI: 10.1016/j.jmatprotec.2006.11.207

Google Scholar

[29] A. erizawa, T. Sato, W.J. Poole, The characterization of dislocation-nanocluster interactions in Al-Mg-Si(-Cu/Ag) alloys, Philos. Mag. Lett. 90 (2010) 279-287.

DOI: 10.1080/09500831003633231

Google Scholar

[30] Z. Jia, L. Ding, Y. Weng, et al. Effects of high temperature pre-straining on natural aging and bake hardening response of Al-Mg-Si alloys, Nonferrous Met. Soc. China 26 (2016) 924-929.

DOI: 10.1016/s1003-6326(16)64188-2

Google Scholar

[31] Y. Aruga, M. Kozuka, Y. Takaki, et al. Effects of natural aging after pre-aging on clustering and bake-hardening behavior in an Al-Mg-Si alloy, Scr. Mater. 116 (2016) 82-86.

DOI: 10.1016/j.scriptamat.2016.01.019

Google Scholar

[32] P.H. Ninive, A. Strandlie, S. Gulbrandsen-Dahl, et al. Detailed atomistic insight into the β" phase in Al-Mg-Si alloys, Acta Mater. 69 (2014) 126-134.

DOI: 10.1016/j.actamat.2014.01.052

Google Scholar

[33] K. Misumi, K. Kaneko, T. Nishiyama, et al. Three-dimensional characterization of interaction between β" precipitate and dislocation in Al-Mg-Si alloy, J. Alloys Compd. 600 (2014) 29-33.

DOI: 10.1016/j.jallcom.2014.02.059

Google Scholar

[34] W. Yi, Z. Yu, X. Xiao, et al. Superior mechanical properties induced by the interaction between dislocations and precipitates in the electro-pulsing treated Al-Mg-Si alloys, Mater. Sci. Eng. A 735 (2018) 154-161.

DOI: 10.1016/j.msea.2018.08.029

Google Scholar

[35] Y. Takaki, T. Masuda, E. Kobayashi, et al. Effects of Natural Aging on Bake Hardening Behavior of Al-Mg-Si Alloys with Multi-Step Aging Process, Mater. Trans. 55 (2014) 1257-1265.

DOI: 10.2320/matertrans.l-m2014827

Google Scholar