Relationship between the Different Amount of LMZBS Glass and Dielectric Properties of Li2(Mg0.96Ni0.04)SiO4 Ceramics

Article Preview

Abstract:

The effect of different amount of LMZBS glass on the sintering behavior, microstructure and microwave dielectric properties of the Li2(Mg0.96Ni0.04)SiO4 ceramics was investigated. The synthesis of materials was based on the solid-state reaction method. The micromorphology of the composite ceramics was confirmed using scanning electron microscopy. The microwave dielectric parameters were measured by the network analyzer. The mechanism of heat transfer coming from LMZBS glass lower the densification temperature of matrix ceramic from 1150°C down to 900°C. Excellent microwave dielectric properties were obtained with 1.2 wt% LMZBS glass sintered at 900°C for 4h (εr=5.77 and Q×f=29,558 GHz at 16 GHz, τf=-14.5 ppm/°C). There was a compatibility between the composite ceramic and Ag. Therefore, the aimed ceramic has great potential value of application in the field of low temperature co-fired ceramics of millimeter-wave devices.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volume 1027)

Pages:

10-14

Citation:

Online since:

April 2021

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2021 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] H. Ohsato, T. Tsunooka, A. Kan, Y. Ohishi, Y. Miyauchi, Y. Tohdo, T. Okawa, K. Kakimoto, H. Ogawa, Microwave-millimeterwave dielectric materials, Key Engineering Materials, 269 (2004) 195-198.

DOI: 10.4028/www.scientific.net/kem.269.195

Google Scholar

[2] X. Wang, W. Lei, R. Ang, W. Lu, ZnAl2O4–TiO2–SrAl2Si2O8 low-permittivity microwave dielectric ceramics, Ceramics International, 39 (2013) 1707-1710.

DOI: 10.1016/j.ceramint.2012.08.013

Google Scholar

[3] R. Peng, Y. Lu, Z. Tao, D. Chen, L. Shi, Q. Zhang, Y. Li, Improved microwave dielectric properties and sintering behavior of LiZnPO4 ceramic by Ni2+-ion doping based on first-principle calculation and experiment, Ceramics International 46 (2020) 11021-11032.

DOI: 10.1016/j.ceramint.2020.01.118

Google Scholar

[4] H. Chen, H. Su, H. Zhang, T. Zhou, B. Zhang, J. Zhang, X. Tang, Low-temperature sintering and microwave dielectric properties of (Zn1−xCox)2SiO4 ceramics, Ceramics International, 40 (2014) 14655-14659.

DOI: 10.1016/j.ceramint.2014.06.053

Google Scholar

[5] A. Feteira, D. Sinclair, Microwave dielectric properties of low firing temperature Bi2W2O9 ceramics, Journal of the American Ceramic Society, 91 (2008) 1338-1341.

DOI: 10.1111/j.1551-2916.2008.02272.x

Google Scholar

[6] G. Yao, P. Liu, H. Zhang, J. Calame, Novel series of low-firing microwave dielectric ceramics: Ca5A4(VO4)6(A2+= Mg,Zn), Journal of the American Ceramic Society, 96 (2013) 1691-1693.

DOI: 10.1111/jace.12359

Google Scholar

[7] S. George, P. Anjana, V. Deepu, P. Mohanan, M. Sebastian, Low-temperature sintering and microwave dielectric properties of Li2MgSiO4 ceramics, Journal of the American Ceramic Society, 92 (2009) 1244-1249.

DOI: 10.1111/j.1551-2916.2009.02998.x

Google Scholar

[8] R. Peng, H. Su, D. An, Y. Lu, Z. Tao, D. Chen, L. Shi, Y. Li, The sintering and dielectric properties modification of Li2MgSiO4 ceramic with Ni2+-ion doping based on calculation and experiment, Journal of Materials Research and Technology, 9 (2020) 1344-1356.

DOI: 10.1016/j.jmrt.2019.11.061

Google Scholar

[9] K. Manu, M. Sebastian, Tape casting of low permittivity wesselsite–glass composite for LTCC based microwave applications, Ceramics International, 42 (2016) 1210-1216.

DOI: 10.1016/j.ceramint.2015.09.052

Google Scholar

[10] T. Sasikala, C. Pavithran, M. Sebastian, Effect of lithium magnesium zinc borosilicate glass addition on densification temperature and dielectric properties of Mg2SiO4 ceramics, Journal of Materials Science: Materials in Electronics, 21 (2009) 141-144.

DOI: 10.1007/s10854-009-9882-7

Google Scholar

[11] B. Hakki, P. Coleman, A dielectric resonator method of measuring inductive capacities in the millimeter range, Ire Transactions on Microwave Theory & Techniques, 8 (2003) 402-410.

DOI: 10.1109/tmtt.1960.1124749

Google Scholar

[12] C. Zhang, R. Zuo, J. Zhang, Y. Wang, J. Jones, Structure-dependent microwave dielectric properties and middle-temperature sintering of forsterite (Mg1-xNix)2SiO4 ceramics, Journal of the American Ceramic Society, 98 (2015) 702-710.

DOI: 10.1111/jace.13347

Google Scholar

[13] V. Gurevich, A. Tagantsev, Intrinsic dielectric loss in crystals, Advances in Physics, 40 (1991) 719-767.

DOI: 10.1080/00018739100101552

Google Scholar

[14] S. Penn, N. Alford, A. Templeton, X. Wang, M. Xu, M. Reece, K. Schrapel, Effect of porosity and grain size on the microwave dielectric properties of sintered alumina, Journal of the American Ceramic Society, 80 (1997) 1885-1888.

DOI: 10.1111/j.1151-2916.1997.tb03066.x

Google Scholar

[15] M. Guo, G. Dou, S. Gong, D. Zhou, Low-temperature sintered MgWO4–CaTiO3 ceramics with near-zero temperature coefficient of resonant frequency, Journal of the European Ceramic Society, 32 (2012) 883-890.

DOI: 10.1016/j.jeurceramsoc.2011.10.042

Google Scholar