The Sintering and Electrical Properties of La0.5Sr0.5Co0.96Ni0.04O3-δ Ceramics with B2O3- CuO Addition

Article Preview

Abstract:

The performance of adding 0–3 wt% B2O3-CuO as a sintering aid to lower the sintering temperature of La0.5Sr0.5Co0.96Ni0.04O3-δ (LSCN) was investigated through solid-state reaction method. Results of linear shrinkage curve, bulk density, and microstructure indicated that BCu addition could promote the sintering process and enhance the densification of LSCN ceramics. With the increase of BCu content, low absolute value of TCR could be achieved, while the conductivity was deteriorated obviously. For LSCN ceramics sintered at 950 °C, the bulk density, conductivity, and TCR were worse than those sintered at higher temperatures. Consequently, the BCu-doped LSCN ceramics might not suitable for the application in the field of LTCC.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volume 1027)

Pages:

3-9

Citation:

Online since:

April 2021

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2021 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] R. Peng, Y. Li, H. Su, Y. Lu, Y. Yun, Q. Zhang, S. Zhang, Effect of cobalt-doping on the dielectric properties and densification temperature of Li2MgSiO4 ceramic: Calculation and experiment, J. Alloys Compd. 827 (2020) 154162.

DOI: 10.1016/j.jallcom.2020.154162

Google Scholar

[2] Y. Lai, H. Su, G. Wang, X. Tang, X. Huang, X. Liang, H. Zhang, Y. Li, K. Huang, X.R. Wang, Low‐temperature sintering of microwave ceramics with high Qf values through LiF addition, J. Am. Ceram. Soc. 102(4) (2019) 1893-1903.

DOI: 10.1111/jace.16086

Google Scholar

[3] Y. Imanaka, Multilayered low temperature cofired ceramics (LTCC) technology, Springer Science & Business Media (2005) 83-100.

DOI: 10.1007/b101196

Google Scholar

[4] F. Makuta, T. Maeda, Resistance paste and resistor, Google Patents, (2009).

Google Scholar

[5] P. Uhlig, A. Serwa, J. Müller, N. Gutzeit, D. Schwanke, J. Pohlner, LTCC Resistors–The Influence of Production Conditions on the Absolute Value and its Reproducibility, 2018 IMAPS Nordic Conference on Microelectronics Packaging (NordPac), IEEE, (2018) 61-66.

DOI: 10.23919/nordpac.2018.8423847

Google Scholar

[6] C. Meneghini, S. Mobilio, F. Pivetti, I. Selmi, M. Prudenziati, B. Morten, RuO2-based thick film resistors studied by extended x-ray absorption spectroscopy, J. Appl. Phys. 86(7) (1999) 3590-3593.

DOI: 10.1063/1.371263

Google Scholar

[7] M. Sebastian, C.P. Menon, J. Philip, R. Schwartz, Thermal properties of La0.5Sr0.5Co1−xNixO3−δ ceramics using photopyroelectric technique, J. Appl. Phys. 94(5) (2003) 3206-3211.

DOI: 10.1063/1.1598628

Google Scholar

[8] H. Kozuka, H. Yamada, T. Hishida, K. Yamagiwa, K. Ohbayashi, K. Koumoto, Electronic transport properties of the perovskite-type oxides La1−xSrxCoO3±δ, J. Mater. Chem. 22(38) (2012) 20217-20222.

DOI: 10.1039/c2jm34613c

Google Scholar

[9] Y. Lu, Y. Li, R. Peng, H. Su, Z. Tao, D. Chen, Effect of V Substitution on the Electrical Properties of La0.5Sr0.5Co1−xVxO3 (x= 0.00–0.10) Ceramics, J. Electron. Mater. 48(11) (2019) 7177-7183.

DOI: 10.1007/s11664-019-07529-4

Google Scholar

[10] K. Huang, H.Y. Lee, J.B. Goodenough, Sr‐and Ni‐doped LaCoO3 and LaFeO3 perovskites new cathode materials for solid‐oxide fuel cells, J. Electrochem. Soc. 145(9) (1998) 3220-3227.

DOI: 10.1149/1.1838789

Google Scholar

[11] P. Hjalmarsson, M. Søgaard, A. Hagen, M. Mogensen, Structural properties and electrochemical performance of strontium-and nickel-substituted lanthanum cobaltite, Solid State Ionics 179(17-18) (2008) 636-646.

DOI: 10.1016/j.ssi.2008.04.026

Google Scholar

[12] Y. Lu, Y. Li, D. Chen, R. Peng, Q. Yang, H. Su, Z. Tao, S. Zhang, Experimental and theoretical study on enhanced electrical properties of nickel-substituted La0.5Sr0.5CoO3-δ ceramics, J. Eur. Ceram. Soc. 40(8) (2020) 3049-3056.

DOI: 10.1016/j.jeurceramsoc.2020.02.063

Google Scholar

[13] R. Umemura, H. Ogawa, A. Yokoi, H. Ohsato, A. Kan, Low-temperature sintering-microwave dielectric property relations in Ba3(VO4)2 ceramic, J. Alloys Compd. 424(1) (2006) 388-393.

DOI: 10.1016/j.jallcom.2006.01.017

Google Scholar

[14] Y.-B. Chen, Low temperature sintering and microwave dielectric properties of (Mg0.7Zn0.3)0.95Co0.05TiO3 ceramics with BaCu(B2O5) additions, J. Alloys Compd. 509(24) (2011) 6884-6888.

DOI: 10.1016/j.jallcom.2011.03.172

Google Scholar

[15] C. Zhang, R. Zuo, Q. Sun, Z. Hu, J. Zhang, Microwave dielectric properties and low temperature sintering of the ZnO–V2O5 doped Ba3Ti2(Mg1/3Nb2/3)2Nb4O21 ceramics, Ceram. Int. 39(5) (2013) 5675-5679.

DOI: 10.1016/j.ceramint.2012.12.084

Google Scholar

[16] X. Tang, H. Yang, Q.-l. Zhang, J.-h. Zhou, Low-temperature sintering and microwave dielectric properties of ZnZrNb2O8 ceramics with BaCu(B2O5) addition, Ceram. Int. 40(8, Part B) (2014) 12875-12881.

DOI: 10.1016/j.ceramint.2014.04.146

Google Scholar

[17] C. Liu, H. Zhang, H. Su, T. Zhou, J. Li, X. Chen, W. Miao, L. Xie, L. Jia, Low temperature sintering BBSZ glass modified Li2MgTi3O8 microwave dielectric ceramics, J. Alloys Compd. 646 (2015) 1139-1142.

DOI: 10.1016/j.jallcom.2015.06.046

Google Scholar

[18] J. Li, Z. Tian, L. Yao, S. Ran, C. Fan, Influences of CuO addition on sintering, microstructural characteristics and microwave dielectric properties of 0.6Nd[(Zn0.7Co0.3)0.5Ti0.5]O3–0.4(Na0.5Nd0.5)TiO3 ceramics, Ceram. Int. 43(17) (2017) 15793-15799.

DOI: 10.1016/j.ceramint.2017.08.147

Google Scholar

[19] J.-R. Kim, D.-W. Kim, S. Yoon, K. Hong, Low temperature sintering and microwave dielectric properties of Ba3Ti5Nb6O28 with B2O3 and CuO additions, J. Electroceram. 17(2) (2006) 439-443.

DOI: 10.1007/s10832-006-0453-5

Google Scholar

[20] L.-X. Pang, D. Zhou, Microwave Dielectric Properties of Low-Firing Li2MO3 (M=Ti, Zr, Sn) Ceramics with B2O3–CuO Addition, J. Am. Ceram. Soc. 93(11) (2010) 3614-3617.

DOI: 10.1111/j.1551-2916.2010.04152.x

Google Scholar

[21] Y. Song, Q. Sun, Y. Lu, X. Liu, F. Wang, Low-temperature sintering and enhanced thermoelectric properties of LaCoO3 ceramics with B2O3–CuO addition, J. Alloys Compd. 536 (2012) 150-154.

DOI: 10.1016/j.jallcom.2012.05.001

Google Scholar

[22] H. Shao, Z. Liu, G. Jian, Y. Li, Low-temperature sintering of Ti1−xCux/3Nb2x/3O2 (x = 0.23) microwave dielectric ceramics with CuO and B2O3 addition, Ceram. Int. 44(3) (2018) 3314-3318.

DOI: 10.1016/j.ceramint.2017.11.108

Google Scholar

[23] D. Zhou, H. Wang, L.X. Pang, X. Yao, X. Wu, Low temperature firing of BiSbO4 microwave dielectric ceramic with B2O3-CuO addition, J. Eur. Ceram. Soc. 29(8) (2009) 1543-1546.

DOI: 10.1016/j.jeurceramsoc.2008.08.024

Google Scholar

[24] S. Duan, E. Li, H. Chen, B. Tang, Y. Yuan, S. Zhang, Influence of Li2O–B2O3–SiO2 glass on the sintering behavior and microwave dielectric properties of BaO–0.15ZnO–4TiO2 ceramics, Ceram. Int. 42(7) (2016) 7943-7949.

DOI: 10.1016/j.ceramint.2016.01.174

Google Scholar

[25] S. Wan, W. Lu, X. Wang, Low‐temperature sintering and electrical properties of ZnO–Bi2O3–TiO2–Co2O3–MnCO3‐based varistor with Bi2O3–B2O3 frit for multilayer chip varistor applications, J. Am. Ceram. Soc. 93(10) (2010) 3319-3323.

DOI: 10.1111/j.1551-2916.2010.03866.x

Google Scholar

[26] M. Hrovat, D. Belavič, J. Kita, J. Holc, J. Cilenšek, S. Drnovšek, Thick-film NTC thermistors and LTCC materials: The dependence of the electrical and microstructural characteristics on the firing temperature, J. Eur. Ceram. Soc. 29(15) (2009) 3265-3271.

DOI: 10.1016/j.jeurceramsoc.2009.05.019

Google Scholar

[27] K. Iwasaki, T. Ito, T. Nagasaki, Y. Arita, M. Yoshino, T. Matsui, Thermoelectric properties of polycrystalline La1−xSrxCoO3, J. Solid State Chem. 181(11) (2008) 3145-3150.

DOI: 10.1016/j.jssc.2008.08.017

Google Scholar

[28] K. Rajeev, A. Raychaudhuri, Quantum corrections to the conductivity in a perovskite oxide: A low-temperature study of LaNi1-xCoxO3 (0≤x≤0.75), Phys. Rev. B. 46(3) (1992) 1309-1320.

Google Scholar

[29] S. Zhao, X. Yue, X. Liu, Influence of Sr doping on structural, electrical and magnetic properties of La0.7Ca0.3MnO3 nanoparticles, Ceram. Int. 43(16) (2017) 13240-13246.

DOI: 10.1016/j.ceramint.2017.07.021

Google Scholar