[1]
R. Peng, Y. Li, H. Su, Y. Lu, Y. Yun, Q. Zhang, S. Zhang, Effect of cobalt-doping on the dielectric properties and densification temperature of Li2MgSiO4 ceramic: Calculation and experiment, J. Alloys Compd. 827 (2020) 154162.
DOI: 10.1016/j.jallcom.2020.154162
Google Scholar
[2]
Y. Lai, H. Su, G. Wang, X. Tang, X. Huang, X. Liang, H. Zhang, Y. Li, K. Huang, X.R. Wang, Low‐temperature sintering of microwave ceramics with high Qf values through LiF addition, J. Am. Ceram. Soc. 102(4) (2019) 1893-1903.
DOI: 10.1111/jace.16086
Google Scholar
[3]
Y. Imanaka, Multilayered low temperature cofired ceramics (LTCC) technology, Springer Science & Business Media (2005) 83-100.
DOI: 10.1007/b101196
Google Scholar
[4]
F. Makuta, T. Maeda, Resistance paste and resistor, Google Patents, (2009).
Google Scholar
[5]
P. Uhlig, A. Serwa, J. Müller, N. Gutzeit, D. Schwanke, J. Pohlner, LTCC Resistors–The Influence of Production Conditions on the Absolute Value and its Reproducibility, 2018 IMAPS Nordic Conference on Microelectronics Packaging (NordPac), IEEE, (2018) 61-66.
DOI: 10.23919/nordpac.2018.8423847
Google Scholar
[6]
C. Meneghini, S. Mobilio, F. Pivetti, I. Selmi, M. Prudenziati, B. Morten, RuO2-based thick film resistors studied by extended x-ray absorption spectroscopy, J. Appl. Phys. 86(7) (1999) 3590-3593.
DOI: 10.1063/1.371263
Google Scholar
[7]
M. Sebastian, C.P. Menon, J. Philip, R. Schwartz, Thermal properties of La0.5Sr0.5Co1−xNixO3−δ ceramics using photopyroelectric technique, J. Appl. Phys. 94(5) (2003) 3206-3211.
DOI: 10.1063/1.1598628
Google Scholar
[8]
H. Kozuka, H. Yamada, T. Hishida, K. Yamagiwa, K. Ohbayashi, K. Koumoto, Electronic transport properties of the perovskite-type oxides La1−xSrxCoO3±δ, J. Mater. Chem. 22(38) (2012) 20217-20222.
DOI: 10.1039/c2jm34613c
Google Scholar
[9]
Y. Lu, Y. Li, R. Peng, H. Su, Z. Tao, D. Chen, Effect of V Substitution on the Electrical Properties of La0.5Sr0.5Co1−xVxO3 (x= 0.00–0.10) Ceramics, J. Electron. Mater. 48(11) (2019) 7177-7183.
DOI: 10.1007/s11664-019-07529-4
Google Scholar
[10]
K. Huang, H.Y. Lee, J.B. Goodenough, Sr‐and Ni‐doped LaCoO3 and LaFeO3 perovskites new cathode materials for solid‐oxide fuel cells, J. Electrochem. Soc. 145(9) (1998) 3220-3227.
DOI: 10.1149/1.1838789
Google Scholar
[11]
P. Hjalmarsson, M. Søgaard, A. Hagen, M. Mogensen, Structural properties and electrochemical performance of strontium-and nickel-substituted lanthanum cobaltite, Solid State Ionics 179(17-18) (2008) 636-646.
DOI: 10.1016/j.ssi.2008.04.026
Google Scholar
[12]
Y. Lu, Y. Li, D. Chen, R. Peng, Q. Yang, H. Su, Z. Tao, S. Zhang, Experimental and theoretical study on enhanced electrical properties of nickel-substituted La0.5Sr0.5CoO3-δ ceramics, J. Eur. Ceram. Soc. 40(8) (2020) 3049-3056.
DOI: 10.1016/j.jeurceramsoc.2020.02.063
Google Scholar
[13]
R. Umemura, H. Ogawa, A. Yokoi, H. Ohsato, A. Kan, Low-temperature sintering-microwave dielectric property relations in Ba3(VO4)2 ceramic, J. Alloys Compd. 424(1) (2006) 388-393.
DOI: 10.1016/j.jallcom.2006.01.017
Google Scholar
[14]
Y.-B. Chen, Low temperature sintering and microwave dielectric properties of (Mg0.7Zn0.3)0.95Co0.05TiO3 ceramics with BaCu(B2O5) additions, J. Alloys Compd. 509(24) (2011) 6884-6888.
DOI: 10.1016/j.jallcom.2011.03.172
Google Scholar
[15]
C. Zhang, R. Zuo, Q. Sun, Z. Hu, J. Zhang, Microwave dielectric properties and low temperature sintering of the ZnO–V2O5 doped Ba3Ti2(Mg1/3Nb2/3)2Nb4O21 ceramics, Ceram. Int. 39(5) (2013) 5675-5679.
DOI: 10.1016/j.ceramint.2012.12.084
Google Scholar
[16]
X. Tang, H. Yang, Q.-l. Zhang, J.-h. Zhou, Low-temperature sintering and microwave dielectric properties of ZnZrNb2O8 ceramics with BaCu(B2O5) addition, Ceram. Int. 40(8, Part B) (2014) 12875-12881.
DOI: 10.1016/j.ceramint.2014.04.146
Google Scholar
[17]
C. Liu, H. Zhang, H. Su, T. Zhou, J. Li, X. Chen, W. Miao, L. Xie, L. Jia, Low temperature sintering BBSZ glass modified Li2MgTi3O8 microwave dielectric ceramics, J. Alloys Compd. 646 (2015) 1139-1142.
DOI: 10.1016/j.jallcom.2015.06.046
Google Scholar
[18]
J. Li, Z. Tian, L. Yao, S. Ran, C. Fan, Influences of CuO addition on sintering, microstructural characteristics and microwave dielectric properties of 0.6Nd[(Zn0.7Co0.3)0.5Ti0.5]O3–0.4(Na0.5Nd0.5)TiO3 ceramics, Ceram. Int. 43(17) (2017) 15793-15799.
DOI: 10.1016/j.ceramint.2017.08.147
Google Scholar
[19]
J.-R. Kim, D.-W. Kim, S. Yoon, K. Hong, Low temperature sintering and microwave dielectric properties of Ba3Ti5Nb6O28 with B2O3 and CuO additions, J. Electroceram. 17(2) (2006) 439-443.
DOI: 10.1007/s10832-006-0453-5
Google Scholar
[20]
L.-X. Pang, D. Zhou, Microwave Dielectric Properties of Low-Firing Li2MO3 (M=Ti, Zr, Sn) Ceramics with B2O3–CuO Addition, J. Am. Ceram. Soc. 93(11) (2010) 3614-3617.
DOI: 10.1111/j.1551-2916.2010.04152.x
Google Scholar
[21]
Y. Song, Q. Sun, Y. Lu, X. Liu, F. Wang, Low-temperature sintering and enhanced thermoelectric properties of LaCoO3 ceramics with B2O3–CuO addition, J. Alloys Compd. 536 (2012) 150-154.
DOI: 10.1016/j.jallcom.2012.05.001
Google Scholar
[22]
H. Shao, Z. Liu, G. Jian, Y. Li, Low-temperature sintering of Ti1−xCux/3Nb2x/3O2 (x = 0.23) microwave dielectric ceramics with CuO and B2O3 addition, Ceram. Int. 44(3) (2018) 3314-3318.
DOI: 10.1016/j.ceramint.2017.11.108
Google Scholar
[23]
D. Zhou, H. Wang, L.X. Pang, X. Yao, X. Wu, Low temperature firing of BiSbO4 microwave dielectric ceramic with B2O3-CuO addition, J. Eur. Ceram. Soc. 29(8) (2009) 1543-1546.
DOI: 10.1016/j.jeurceramsoc.2008.08.024
Google Scholar
[24]
S. Duan, E. Li, H. Chen, B. Tang, Y. Yuan, S. Zhang, Influence of Li2O–B2O3–SiO2 glass on the sintering behavior and microwave dielectric properties of BaO–0.15ZnO–4TiO2 ceramics, Ceram. Int. 42(7) (2016) 7943-7949.
DOI: 10.1016/j.ceramint.2016.01.174
Google Scholar
[25]
S. Wan, W. Lu, X. Wang, Low‐temperature sintering and electrical properties of ZnO–Bi2O3–TiO2–Co2O3–MnCO3‐based varistor with Bi2O3–B2O3 frit for multilayer chip varistor applications, J. Am. Ceram. Soc. 93(10) (2010) 3319-3323.
DOI: 10.1111/j.1551-2916.2010.03866.x
Google Scholar
[26]
M. Hrovat, D. Belavič, J. Kita, J. Holc, J. Cilenšek, S. Drnovšek, Thick-film NTC thermistors and LTCC materials: The dependence of the electrical and microstructural characteristics on the firing temperature, J. Eur. Ceram. Soc. 29(15) (2009) 3265-3271.
DOI: 10.1016/j.jeurceramsoc.2009.05.019
Google Scholar
[27]
K. Iwasaki, T. Ito, T. Nagasaki, Y. Arita, M. Yoshino, T. Matsui, Thermoelectric properties of polycrystalline La1−xSrxCoO3, J. Solid State Chem. 181(11) (2008) 3145-3150.
DOI: 10.1016/j.jssc.2008.08.017
Google Scholar
[28]
K. Rajeev, A. Raychaudhuri, Quantum corrections to the conductivity in a perovskite oxide: A low-temperature study of LaNi1-xCoxO3 (0≤x≤0.75), Phys. Rev. B. 46(3) (1992) 1309-1320.
Google Scholar
[29]
S. Zhao, X. Yue, X. Liu, Influence of Sr doping on structural, electrical and magnetic properties of La0.7Ca0.3MnO3 nanoparticles, Ceram. Int. 43(16) (2017) 13240-13246.
DOI: 10.1016/j.ceramint.2017.07.021
Google Scholar