[1]
Heusler F and Dtsch V Phys. Ges (1903).
Google Scholar
[2]
de Groot R A, Mueller F M, Engen P G v and Buschow K H J New Class of Materials: Half-Metallic Ferromagnets Phys. Rev. Lett. 50 (1983) 2024-7.
DOI: 10.1103/physrevlett.50.2024
Google Scholar
[3]
Dulal R P, Dahal B R, Forbes A, Bhattarai N, Pegg I L and Philip J Weak localization and small anomalous Hall conductivity in ferromagnetic Weyl semimetal Co2TiGe Sci Rep 9 (2019) 3342.
DOI: 10.1038/s41598-019-39037-0
Google Scholar
[4]
Chen X-Q, Podloucky R and Rogl P Ab initio prediction of half-metallic properties for the ferromagnetic Heusler alloys Co2MSi (M=Ti,V,Cr) J. Appl. Phys. 100 (2006).
DOI: 10.1063/1.2374672
Google Scholar
[5]
Tafti F F, Fujii T, Juneau-Fecteau A, René de Cotret S, Doiron-Leyraud N, Asamitsu A and Taillefer L Superconductivity in the noncentrosymmetric half-Heusler compound LuPtBi: A candidate for topological superconductivity Phys. Rev. B 87 (2013).
DOI: 10.1103/physrevb.87.184504
Google Scholar
[6]
Zhang H and Zhang S-C Topological insulators from the perspective of first-principles calculations physica status solidi (RRL) - Rapid Research Letters 7 (2013) 72-81.
DOI: 10.1002/pssr.201206414
Google Scholar
[7]
Yan B and Felser C Topological Materials: Weyl Semimetals Annual Review of Condensed Matter Physics 8 (2017) 337-54.
DOI: 10.1146/annurev-conmatphys-031016-025458
Google Scholar
[8]
Graf T, Felser C and Parkin S S P Simple rules for the understanding of Heusler compounds Progress in Solid State Chemistry 39 (2011) 1-50.
DOI: 10.1016/j.progsolidstchem.2011.02.001
Google Scholar
[9]
Sinova J, Valenzuela S O, Wunderlich J, Back C H and Jungwirth T Spin Hall effects Reviews of Modern Physics 87 (2015) 1213-60.
DOI: 10.1103/revmodphys.87.1213
Google Scholar
[10]
Smejkal L, Zelezny J, Sinova J and Jungwirth T Electric Control of Dirac Quasiparticles by Spin-Orbit Torque in an Antiferromagnet Phys. Rev. Lett. 118 (2017) 106402.
DOI: 10.1103/physrevlett.118.106402
Google Scholar
[11]
Rui W B, Zhao Y X and Schnyder A P Topological transport in Dirac nodal-line semimetals Phys. Rev. B 97 (2018).
DOI: 10.1103/physrevb.97.161113
Google Scholar
[12]
Chang G, Xu S Y, Zheng H, Singh B, Hsu C H, Bian G, Alidoust N, Belopolski I, Sanchez D S, Zhang S, Lin H and Hasan M Z Room-temperature magnetic topological Weyl fermion and nodal line semimetal states in half-metallic Heusler Co2TiX (X=Si, Ge, or Sn) Sci Rep 6 (2016) 38839.
DOI: 10.1038/srep38839
Google Scholar
[13]
Wang Z, Vergniory M G, Kushwaha S, Hirschberger M, Chulkov E V, Ernst A, Ong N P, Cava R J and Bernevig B A Time-Reversal-Breaking Weyl Fermions in Magnetic Heusler Alloys Phys. Rev. Lett. 117 (2016) 236401.
DOI: 10.1103/physrevlett.124.239901
Google Scholar
[14]
Weyl I Elektron und Gravitation. I. Z. Phys. 56 (1929) 330–52.
Google Scholar
[15]
Burkov A A and Balents L Weyl semimetal in a topological insulator multilayer Phys. Rev. Lett. 107 (2011) 127205.
DOI: 10.1103/physrevlett.107.127205
Google Scholar
[16]
Wan X, Turner A M, Vishwanath A and Savrasov S Y Topological semimetal and Fermi-arc surface states in the electronic structure of pyrochlore iridates Phys. Rev. B 83 (2011).
DOI: 10.1103/physrevb.83.205101
Google Scholar
[17]
Parameswaran S A, Grover T, Abanin D A, Pesin D A and Vishwanath A Probing the Chiral Anomaly with Nonlocal Transport in Three-Dimensional Topological Semimetals Physical Review X 4 (2014).
DOI: 10.1103/physrevx.4.031035
Google Scholar
[18]
Puphal P, Pomjakushin V, Kanazawa N, Ukleev V, Gawryluk D J, Ma J, Naamneh M, Plumb N C, Keller L, Cubitt R, Pomjakushina E and White J S Topological Magnetic Phase in the Candidate Weyl Semimetal CeAlGe Phys. Rev. Lett. 124 (2020) 017202.
DOI: 10.1103/physrevlett.124.017202
Google Scholar
[19]
Soluyanov A A, Gresch D, Wang Z, Wu Q, Troyer M, Dai X and Bernevig B A Type-II Weyl semimetals Nature 527 (2015) 495-8.
DOI: 10.1038/nature15768
Google Scholar
[20]
Sun Y, Wu S-C, Ali M N, Felser C and Yan B Prediction of Weyl semimetal in orthorhombic MoTe2 Phys. Rev. B 92 (2015).
Google Scholar
[21]
Kübler J and Felser C Berry curvature and the anomalous Hall effect in Heusler compounds Phys. Rev. B 85 (2012).
DOI: 10.1103/physrevb.85.012405
Google Scholar
[22]
Hal´asz G a B and Balents1 L Time-reversal invariant realization of theWeyl semimetal phase Phys. Rev. B (2012).
Google Scholar
[23]
Armitage N P, Mele E J and Vishwanath A Weyl and Dirac semimetals in three-dimensional solids Reviews of Modern Physics 90 (2018).
DOI: 10.1103/revmodphys.90.015001
Google Scholar
[24]
Wang Z, Sun Y, Chen X-Q, Franchini C, Xu G, Weng H, Dai X and Fang Z Dirac semimetal and topological phase transitions in A3Bi (A=Na, K, Rb) Phys. Rev. B 85 (2012).
Google Scholar
[25]
Z K L et.al Discovery of a Three-Dimensional Topological Dirac Semimetal, Na3Bi sciencxpress (2014).
Google Scholar
[26]
Liu Z K, Jiang J, Zhou B, Wang Z J, Zhang Y, Weng H M, Prabhakaran D, Mo S K, Peng H, Dudin P, Kim T, Hoesch M, Fang Z, Dai X, Shen Z X, Feng D L, Hussain Z and Chen Y L A stable three-dimensional topological Dirac semimetal Cd3As2 Nat Mater 13 (2014) 677-81.
DOI: 10.1038/nmat3990
Google Scholar
[27]
Nakayama K, Wang Z, Takane D, Souma S, Kubota Y, Nakata Y, Cacho C, Kim T, Ekahana S A, Shi M, Kitamura M, Horiba K, Kumigashira H, Takahashi T, Ando Y and Sato T Observation of inverted band structure in the topological Dirac semimetal candidate CaAuAs Phys. Rev. B 102 (2020).
DOI: 10.1103/physrevb.102.041104
Google Scholar
[28]
Steinberg J A, Young S M, Zaheer S, Kane C L, Mele E J and Rappe A M Bulk Dirac points in distorted spinels Phys. Rev. Lett. 112 (2014) 036403.
DOI: 10.1103/physrevlett.112.036403
Google Scholar
[29]
Young S M, Zaheer S, Teo J C, Kane C L, Mele E J and Rappe A M Dirac semimetal in three dimensions Phys. Rev. Lett. 108 (2012) 140405.
DOI: 10.1103/physrevlett.108.140405
Google Scholar
[30]
Fang C, Hongming Weng, Xi Dai and Fang Z Topological nodal line semimetals (2016).
Google Scholar
[31]
Zhang X, Jin L, Dai X and Liu G Topological Type-II Nodal Line Semimetal and Dirac Semimetal State in Stable Kagome Compound Mg3Bi2 J Phys Chem Lett 8 (2017) 4814-9.
DOI: 10.1021/acs.jpclett.7b02129.s001
Google Scholar
[32]
Krottenmüller M, Vöst M, Unglert N, Ebad-Allah J, Eickerling G, Volkmer D, Hu J, Zhu Y L, Mao Z Q, Scherer W and Kuntscher C A Indications for Lifshitz transitions in the nodal-line semimetal ZrSiTe induced by interlayer interaction Phys. Rev. B 101 (2020).
DOI: 10.1103/physrevb.101.081108
Google Scholar
[33]
Ebad-Allah J, Afonso J F, Krottenmüller M, Hu J, Zhu Y L, Mao Z Q, Kuneš J and Kuntscher C A Chemical pressure effect on the optical conductivity of the nodal-line semimetals ZrSiY(Y=S,Se,Te) and ZrGeY(Y=S,Te) Phys Rev B 99 (2019).
DOI: 10.1103/physrevb.99.245133
Google Scholar
[34]
Pezzini S, van Delft M R, Schoop L M, Lotsch B V, Carrington A, Katsnelson M I, Hussey N E and Wiedmann S Unconventional mass enhancement around the Dirac nodal loop in ZrSiS Nature Physics 14 (2017) 178-83.
DOI: 10.1038/nphys4306
Google Scholar
[35]
Wang J-R, Liu G-Z, Wan X and Zhang C Quantum criticality of the excitonic insulating transition in the nodal-line semimetal ZrSiS Phys. Rev. B 101 (2020).
DOI: 10.1103/physrevb.101.245151
Google Scholar
[36]
Wang X-B, Ma X-M, Emmanouilidou E, Shen B, Hsu C-H, Zhou C-S, Zuo Y, Song R-R, Xu S-Y, Wang G, Huang L, Ni N and Liu C Topological surface electronic states in candidate nodal-line semimetal CaAgAs Phys. Rev. B 96 (2017).
DOI: 10.1103/physrevb.96.161112
Google Scholar
[37]
Galanakis I, Dederichs P H and Papanikolaou N Slater-Pauling behavior and origin of the half-metallicity of the full-Heusler alloys Phys. Rev. B 66 (2002).
DOI: 10.1103/physrevb.66.174429
Google Scholar