Heusler Compounds and their Topological Semimetal States

Article Preview

Abstract:

Heusler compounds are a family of materials with high tunability due to their structure and lots of states or properties have been discovered in it. Topological semimetals (TSM) are a new phase of quantum matter that many materials have been reported to have this phase, including Heusler compounds. In this review, basic concepts of Heusler compounds and main properties of three TSMs are first reviewed, followed by analysis of topological semimetal states in Heusler compounds. In the end, the most suitable TSM state in Heusler compound is given.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volume 1027)

Pages:

33-41

Citation:

Online since:

April 2021

Authors:

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2021 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Heusler F and Dtsch V Phys. Ges (1903).

Google Scholar

[2] de Groot R A, Mueller F M, Engen P G v and Buschow K H J New Class of Materials: Half-Metallic Ferromagnets Phys. Rev. Lett. 50 (1983) 2024-7.

DOI: 10.1103/physrevlett.50.2024

Google Scholar

[3] Dulal R P, Dahal B R, Forbes A, Bhattarai N, Pegg I L and Philip J Weak localization and small anomalous Hall conductivity in ferromagnetic Weyl semimetal Co2TiGe Sci Rep 9 (2019) 3342.

DOI: 10.1038/s41598-019-39037-0

Google Scholar

[4] Chen X-Q, Podloucky R and Rogl P Ab initio prediction of half-metallic properties for the ferromagnetic Heusler alloys Co2MSi (M=Ti,V,Cr) J. Appl. Phys. 100 (2006).

DOI: 10.1063/1.2374672

Google Scholar

[5] Tafti F F, Fujii T, Juneau-Fecteau A, René de Cotret S, Doiron-Leyraud N, Asamitsu A and Taillefer L Superconductivity in the noncentrosymmetric half-Heusler compound LuPtBi: A candidate for topological superconductivity Phys. Rev. B 87 (2013).

DOI: 10.1103/physrevb.87.184504

Google Scholar

[6] Zhang H and Zhang S-C Topological insulators from the perspective of first-principles calculations physica status solidi (RRL) - Rapid Research Letters 7 (2013) 72-81.

DOI: 10.1002/pssr.201206414

Google Scholar

[7] Yan B and Felser C Topological Materials: Weyl Semimetals Annual Review of Condensed Matter Physics 8 (2017) 337-54.

DOI: 10.1146/annurev-conmatphys-031016-025458

Google Scholar

[8] Graf T, Felser C and Parkin S S P Simple rules for the understanding of Heusler compounds Progress in Solid State Chemistry 39 (2011) 1-50.

DOI: 10.1016/j.progsolidstchem.2011.02.001

Google Scholar

[9] Sinova J, Valenzuela S O, Wunderlich J, Back C H and Jungwirth T Spin Hall effects Reviews of Modern Physics 87 (2015) 1213-60.

DOI: 10.1103/revmodphys.87.1213

Google Scholar

[10] Smejkal L, Zelezny J, Sinova J and Jungwirth T Electric Control of Dirac Quasiparticles by Spin-Orbit Torque in an Antiferromagnet Phys. Rev. Lett. 118 (2017) 106402.

DOI: 10.1103/physrevlett.118.106402

Google Scholar

[11] Rui W B, Zhao Y X and Schnyder A P Topological transport in Dirac nodal-line semimetals Phys. Rev. B 97 (2018).

DOI: 10.1103/physrevb.97.161113

Google Scholar

[12] Chang G, Xu S Y, Zheng H, Singh B, Hsu C H, Bian G, Alidoust N, Belopolski I, Sanchez D S, Zhang S, Lin H and Hasan M Z Room-temperature magnetic topological Weyl fermion and nodal line semimetal states in half-metallic Heusler Co2TiX (X=Si, Ge, or Sn) Sci Rep 6 (2016) 38839.

DOI: 10.1038/srep38839

Google Scholar

[13] Wang Z, Vergniory M G, Kushwaha S, Hirschberger M, Chulkov E V, Ernst A, Ong N P, Cava R J and Bernevig B A Time-Reversal-Breaking Weyl Fermions in Magnetic Heusler Alloys Phys. Rev. Lett. 117 (2016) 236401.

DOI: 10.1103/physrevlett.124.239901

Google Scholar

[14] Weyl I Elektron und Gravitation. I. Z. Phys. 56 (1929) 330–52.

Google Scholar

[15] Burkov A A and Balents L Weyl semimetal in a topological insulator multilayer Phys. Rev. Lett. 107 (2011) 127205.

DOI: 10.1103/physrevlett.107.127205

Google Scholar

[16] Wan X, Turner A M, Vishwanath A and Savrasov S Y Topological semimetal and Fermi-arc surface states in the electronic structure of pyrochlore iridates Phys. Rev. B 83 (2011).

DOI: 10.1103/physrevb.83.205101

Google Scholar

[17] Parameswaran S A, Grover T, Abanin D A, Pesin D A and Vishwanath A Probing the Chiral Anomaly with Nonlocal Transport in Three-Dimensional Topological Semimetals Physical Review X 4 (2014).

DOI: 10.1103/physrevx.4.031035

Google Scholar

[18] Puphal P, Pomjakushin V, Kanazawa N, Ukleev V, Gawryluk D J, Ma J, Naamneh M, Plumb N C, Keller L, Cubitt R, Pomjakushina E and White J S Topological Magnetic Phase in the Candidate Weyl Semimetal CeAlGe Phys. Rev. Lett. 124 (2020) 017202.

DOI: 10.1103/physrevlett.124.017202

Google Scholar

[19] Soluyanov A A, Gresch D, Wang Z, Wu Q, Troyer M, Dai X and Bernevig B A Type-II Weyl semimetals Nature 527 (2015) 495-8.

DOI: 10.1038/nature15768

Google Scholar

[20] Sun Y, Wu S-C, Ali M N, Felser C and Yan B Prediction of Weyl semimetal in orthorhombic MoTe2 Phys. Rev. B 92 (2015).

Google Scholar

[21] Kübler J and Felser C Berry curvature and the anomalous Hall effect in Heusler compounds Phys. Rev. B 85 (2012).

DOI: 10.1103/physrevb.85.012405

Google Scholar

[22] Hal´asz G a B and Balents1 L Time-reversal invariant realization of theWeyl semimetal phase Phys. Rev. B (2012).

Google Scholar

[23] Armitage N P, Mele E J and Vishwanath A Weyl and Dirac semimetals in three-dimensional solids Reviews of Modern Physics 90 (2018).

DOI: 10.1103/revmodphys.90.015001

Google Scholar

[24] Wang Z, Sun Y, Chen X-Q, Franchini C, Xu G, Weng H, Dai X and Fang Z Dirac semimetal and topological phase transitions in A3Bi (A=Na, K, Rb) Phys. Rev. B 85 (2012).

Google Scholar

[25] Z K L et.al Discovery of a Three-Dimensional Topological Dirac Semimetal, Na3Bi sciencxpress (2014).

Google Scholar

[26] Liu Z K, Jiang J, Zhou B, Wang Z J, Zhang Y, Weng H M, Prabhakaran D, Mo S K, Peng H, Dudin P, Kim T, Hoesch M, Fang Z, Dai X, Shen Z X, Feng D L, Hussain Z and Chen Y L A stable three-dimensional topological Dirac semimetal Cd3As2 Nat Mater 13 (2014) 677-81.

DOI: 10.1038/nmat3990

Google Scholar

[27] Nakayama K, Wang Z, Takane D, Souma S, Kubota Y, Nakata Y, Cacho C, Kim T, Ekahana S A, Shi M, Kitamura M, Horiba K, Kumigashira H, Takahashi T, Ando Y and Sato T Observation of inverted band structure in the topological Dirac semimetal candidate CaAuAs Phys. Rev. B 102 (2020).

DOI: 10.1103/physrevb.102.041104

Google Scholar

[28] Steinberg J A, Young S M, Zaheer S, Kane C L, Mele E J and Rappe A M Bulk Dirac points in distorted spinels Phys. Rev. Lett. 112 (2014) 036403.

DOI: 10.1103/physrevlett.112.036403

Google Scholar

[29] Young S M, Zaheer S, Teo J C, Kane C L, Mele E J and Rappe A M Dirac semimetal in three dimensions Phys. Rev. Lett. 108 (2012) 140405.

DOI: 10.1103/physrevlett.108.140405

Google Scholar

[30] Fang C, Hongming Weng, Xi Dai and Fang Z Topological nodal line semimetals (2016).

Google Scholar

[31] Zhang X, Jin L, Dai X and Liu G Topological Type-II Nodal Line Semimetal and Dirac Semimetal State in Stable Kagome Compound Mg3Bi2 J Phys Chem Lett 8 (2017) 4814-9.

DOI: 10.1021/acs.jpclett.7b02129.s001

Google Scholar

[32] Krottenmüller M, Vöst M, Unglert N, Ebad-Allah J, Eickerling G, Volkmer D, Hu J, Zhu Y L, Mao Z Q, Scherer W and Kuntscher C A Indications for Lifshitz transitions in the nodal-line semimetal ZrSiTe induced by interlayer interaction Phys. Rev. B 101 (2020).

DOI: 10.1103/physrevb.101.081108

Google Scholar

[33] Ebad-Allah J, Afonso J F, Krottenmüller M, Hu J, Zhu Y L, Mao Z Q, Kuneš J and Kuntscher C A Chemical pressure effect on the optical conductivity of the nodal-line semimetals ZrSiY(Y=S,Se,Te) and ZrGeY(Y=S,Te) Phys Rev B 99 (2019).

DOI: 10.1103/physrevb.99.245133

Google Scholar

[34] Pezzini S, van Delft M R, Schoop L M, Lotsch B V, Carrington A, Katsnelson M I, Hussey N E and Wiedmann S Unconventional mass enhancement around the Dirac nodal loop in ZrSiS Nature Physics 14 (2017) 178-83.

DOI: 10.1038/nphys4306

Google Scholar

[35] Wang J-R, Liu G-Z, Wan X and Zhang C Quantum criticality of the excitonic insulating transition in the nodal-line semimetal ZrSiS Phys. Rev. B 101 (2020).

DOI: 10.1103/physrevb.101.245151

Google Scholar

[36] Wang X-B, Ma X-M, Emmanouilidou E, Shen B, Hsu C-H, Zhou C-S, Zuo Y, Song R-R, Xu S-Y, Wang G, Huang L, Ni N and Liu C Topological surface electronic states in candidate nodal-line semimetal CaAgAs Phys. Rev. B 96 (2017).

DOI: 10.1103/physrevb.96.161112

Google Scholar

[37] Galanakis I, Dederichs P H and Papanikolaou N Slater-Pauling behavior and origin of the half-metallicity of the full-Heusler alloys Phys. Rev. B 66 (2002).

DOI: 10.1103/physrevb.66.174429

Google Scholar