First-principles Investigation on the Electrical and Structural Characteristics of VO2 (M) and VO2 (R)

Article Preview

Abstract:

VO2 is promising sensing material for gas selection, and it has appealed to great attention. The structures of VO2 (M) and VO2 (R) crystal have been studied through the first principles. We investigated band structure, the density of states (DOS) and charge density difference of phases of VO2, the results show that when VO2 (M) is transformed into VO2 (R), the structure changes from semiconductor to conductor. The special property is expected to be used in gas sensors, lithium batteries, catalysis, supercapacitors and other fields. The basic findings of this calculation will be conducive to better comprehending of the characteristics and performance of VO2 crystal as a gas sensor material.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volume 1027)

Pages:

64-68

Citation:

Online since:

April 2021

Keywords:

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2021 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] S. Agarwal, P. Rai, E. N. Gatell, E. Llobet, F. Güell, M. Kumar and K. Awasthi, Sensors Actuators B: Chem., 2019, 292, 24-31.

DOI: 10.1016/j.snb.2019.04.083

Google Scholar

[2] G. Tofighi, D. Degler, B. Junker, S. Müller, H. Lichtenberg, W. Wang, U. Weimar, N. Barsan and J.-D. Grunwaldt, Sensors Actuators B: Chem., 2019, 292, 48-56.

DOI: 10.1016/j.snb.2019.02.107

Google Scholar

[3] D. Li, Y. Tang, D. Ao, X. Xiang, S. Wang and X. Zu, International Journal of Hydrogen Energy, 2019, 44, 3985-3992.

Google Scholar

[4] J.-H. Kim, A. Mirzaei, H. W. Kim and S. S. Kim, Sensors Actuators B: Chem., 2019, 126693.

Google Scholar

[5] B.-J. Kim, Y. W. Lee, B.-G. Chae, S. J. Yun, S.-Y. Oh, H.-T. Kim and Y.-S. Lim, Applied physics letters, 2007, 90, 023515.

Google Scholar

[6] L. M. Housel, C. D. Quilty, A. Abraham, C. R. Tang, A. H. McCarthy, G. D. Renderos, P. Liu, E. S. Takeuchi, A. C. Marschilok and K. J. Takeuchi, Chemistry of Materials, 2018, 30, 7535-7544.

DOI: 10.1021/acs.chemmater.8b02665

Google Scholar

[7] D. Guo, C. Ling, C. Wang, D. Wang, J. Li, Z. Zhao, Z. Wang, Y. Zhao, J. Zhang and H. Jin, ACS applied materials & interfaces, 2018, 10, 28627-28634.

DOI: 10.1021/acsami.8b08908

Google Scholar

[8] S. Wang, W. Wei, T. Huang, M. Yuan, Y. Yang, W. Yang, R. Zhang, T. Zhang, Z. Chen and X. Chen, Advanced Engineering Materials, 2019, 1900947.

Google Scholar

[9] M. Liu, W. Fu, Y. Yang, T. Li and Y. Wang, Applied Physics Letters, 2018, 112, 093104.

Google Scholar

[10] H. Yin, K. Yu, Z. Zhang, M. Zeng, L. Lou and Z. Zhu, Electroanalysis, 2011, 23, 1752-1758.

Google Scholar

[11] A. Simo, B. Mwakikunga, B. T. Sone, B. Julies, R. Madjoe and M. Maaza, international journal of hydrogen energy, 2014, 39, 8147-8157.

DOI: 10.1016/j.ijhydene.2014.03.037

Google Scholar

[12] R. Chen, L. Miao, C. Liu, J. Zhou, H. Cheng, T. Asaka, Y. Iwamoto and S. Tanemura, Scientific reports, 2015, 5, 14087.

Google Scholar

[13] L. Mai, B. Hu, T. Hu, W. Chen and E. Gu, The Journal of Physical Chemistry B, 2006, 110, 19083-19086.

Google Scholar

[14] S. J. Clark, M. D. Segall, C. J. Pickard, P. J. Hasnip, M. I. Probert, K. Refson and M. C. Payne, Zeitschrift für Kristallographie-Crystalline Materials, 2005, 220, 567-570.

DOI: 10.1524/zkri.220.5.567.65075

Google Scholar

[15] M. Ernzerhof and G. E. Scuseria, The Journal of chemical physics, 1999, 110, 5029-5036.

Google Scholar

[16] J. P. Perdew, K. Burke and M. Ernzerhof, Physical review letters, 1996, 77, 3865.

Google Scholar

[17] Y. Wu, L. Fan, W. Huang, S. Chen, S. Chen, F. Chen, C. Zou and Z. Wu, Physical Chemistry Chemical Physics, 2014, 16, 17705-17714.

Google Scholar

[18] D. Lee, H. Kim, J. W. Kim, I. J. Lee, Y. Kim, H.-J. Yun, J. Lee and S. Park, Applied Surface Science, 2017, 396, 36-40.

DOI: 10.1016/j.apsusc.2016.11.047

Google Scholar