[1]
D. Yin, Z. Chen, N. Jiang, Y. Liu, Y. Bi, X. Zhang, W. Han, J. Feng and H. Sun. Highly flexible fabric‐based organic light‐emitting devices for conformal wearable displays. Adv. Mater. Technol. 5 (2020) 1900942 (1-7).
DOI: 10.1002/admt.201900942
Google Scholar
[2]
J. Smith, E. Bawolek, Y.K. Lee, B. O'Brien, M. Marrs, E. Howard, M. Strnad, J.B. Christen, and M. Goryll. Application of flexible flat panel display technology to wearable biomedical devices. Electron. Lett. 51 (2015) 1312-14.
DOI: 10.1049/el.2015.1497
Google Scholar
[3]
Y. Gao, L. Yu, J.C. Yeo, J. Yeo and C.T. Lim. Flexible hybrid sensors for health monitoring: materials and mechanisms to render wear ability. Adv. Mater. 32 (2019) 1902133(1-31).
DOI: 10.1002/adma.201902133
Google Scholar
[4]
X. Yin, H. Li, L. Han, J. Meng, J. Lu, L. Zhang, W. Li, Q. Fu, K. Li and Q. Song. Lightweight and flexible 3D graphene micro-tubes membrane for high-efficiency electromagnetic-interference shielding. Chem. Eng. J. 387(2020) 124025.
DOI: 10.1016/j.cej.2020.124025
Google Scholar
[5]
Flexible Electronics & Circuit Market by Application (OLED & LCD Display, Printed Sensor, Battery, Thin-Film PV, OLED Lighting), Circuit Structure (Single-Sided, Multilayer, Double-Sided, Rigid), Vertical, and Geography-Global Forecast to 2023 (online). https://www.marketsandmarkets.com/Market-Reports/flexible-electronics-market-50634885.ht-ml.
Google Scholar
[6]
Flexible Display Market-Growth Trends and Forecast (2020-2025) (online). https://www.mordorintelligence.com/industry-reports/flexible-display-market.
Google Scholar
[7]
L. Guan, J. Xu. Research progress of paper substrate in flexible substrate. Chin. J. Liq. Crys. Disp. 33 (2018) 365-374.
Google Scholar
[8]
J. Gu, D. Gao, X. Gao. Evaporation coating technique of high barrier transparent ceramic film. Pack. Eng. 28 (2007) 27-30.
Google Scholar
[9]
X. Tong. Preparation of protective films on flexible graphene/PET substrates and investigation of the properties of the hybrid films (Liaoning: University of Science and Technology Liaoning, 2009).
Google Scholar
[10]
R. Thomas, D.C. Dube, M.N. Kamalasanan and S. Chandra. Optical and electrical properties of BaTiO3 thin films prepared by chemical solution deposition. Thin Solid Films. 346 (1999) 212-215.
DOI: 10.1016/s0040-6090(98)01772-6
Google Scholar
[11]
M.M. Hosen, A.K.M.A. Ullah, M.M. Haque, S.M.A. Rahim, K.M.A. Sobahan and M.N.I. Khan. Optical and electrical properties of crystalline indium tin oxide thin film deposited by vacuum evaporation technique. Optoelectron. Lett. 15 (2019) 356-359.
DOI: 10.1007/s11801-019-9006-4
Google Scholar
[12]
S. Chang. Performance optimization of CZTSe thin film solar cells fabricated by magnetron sputtering (Henan: Henan University, 2019).
Google Scholar
[13]
D. Ma, G. Wang, H. Wang, Y. Zhang. Study of effects of modifying the flexible substrate on transparent conductive properties and adherences of ZnO: Al thin film. China. Ceram. 55 (2019) 44-51.
Google Scholar
[14]
Z. Liu. Investigation of SiOx-(DCPD/MA)f Barrier film prepared by magnetron co-sputtering on PET substrate. (Harbin: Harbin Institute of Technology, 2013).
Google Scholar
[15]
Y. Li. Preparation of Fe2~3N thin films by magnetron sputtering and effect of deposition temperature on their magneto electric properties (Jiangsu: Nanjing University of Posts and Telecommunications, 2019).
Google Scholar
[16]
D. Spee, K.V.D. Werf, J. Rath and R. Schropp. Excellent organic/inorganic transparent thin film moisture barrier entirely made by hot wire CVD at 100°C. Phys. Status Solidi RRL. 6 (2012) 151-153.
DOI: 10.1002/pssr.201206035
Google Scholar
[17]
Y. Chen. Fabrication of polymer thin films with good barrier and gas separation properties via initiated chemical vapor deposition ( Zhejiang: Ningbo University, 2018).
Google Scholar
[18]
M. Komada, T. Oboshi, K. Ichimura. Novel transparent gas barrier film prepared by PECVD method. Soc. Vac. Coaters Annu. Tech. Conf. Proc.(2000) 352-356.
Google Scholar
[19]
J. Madocks, J. Rewhinkle, L. Barton. Packaging barrier films deposited on PET by PECVD using a new high density plasma source. Mater. Sci. Eng. B119 (2005) 268-273.
DOI: 10.1016/j.mseb.2004.12.080
Google Scholar
[20]
B. Wu, J. Xie, Y. Chen. Parylene film and its application in moisture-proof protection. Sci. Technol. Inno. 01 (2019) 142-143.
Google Scholar
[21]
T.N. Chen, D.S. Wuu, C.C. Wu, C.C. Chiang, Y.P. Chen and R.H. Horng. Improvements of permeation barrier coatings using encapsulated parylene interlayers for flexible electronic applications. Plasma processes polym. 4 (2007) 180-185.
DOI: 10.1002/ppap.200600158
Google Scholar
[22]
M. Zhou, L. Yue, Q. Chen. Barrier properties of PET coated by DLC film through microwave surface wave plasma enhanced chemical vapor deposition. Pack. Eng. 40 (2019) 72-80.
Google Scholar
[23]
C.H. Jeong, J.H. Lee, J.T. Lim, N.G. Cho, C.H. Moon and G.Y. Yeom. Deposition of SiO2 by plasma enhanced chemical vapor deposition as the diffusion barrier to polymer substrate. Jpn. J. Appl. Phys. 44 (2005) 1022-26.
DOI: 10.1143/jjap.44.1022
Google Scholar
[24]
M. Leskel, M. Ritala. Atomic layer deposition chemistry: recent developments and future challenges. Angew. chem. 42 (2003) 5548-54.
DOI: 10.1002/anie.200301652
Google Scholar
[25]
R.W. Johnson, A. Hultqvist, S.F. Bent. A brief review of atomic layer deposition: from fundamentals to applications. Mater. Today. 17 (2014) 236-246.
DOI: 10.1016/j.mattod.2014.04.026
Google Scholar
[26]
K.L. Jarvis, P.J. Evans, G. Triani. Influence of the polymeric substrate on the water permeation of alumina barrier films deposited by atomic layer deposition. Surf. Coat. Tech. 337 (2018) 44-52.
DOI: 10.1016/j.surfcoat.2017.12.056
Google Scholar
[27]
F.T. Tsai, C.K. Chao, P.S. Jhu and R.C. Chang. Flexible organic light-emitting diodes encapsulated with gas barrier films prepared by atomic layer deposition. Sens. Mater. 28 (2016) 983-990.
DOI: 10.18494/sam.2016.1387
Google Scholar
[28]
Y. Yang, Y. Duan, Y. Duan, X. Wang, P. Chen, D. Yang, F. Sun and K. Xue. High barrier properties of transparent thin-film encapsulations for top emission organic light-emitting diodes. Org. Electron. 15 (2014) 1120-25.
DOI: 10.1117/12.2062525
Google Scholar
[29]
R.L. Puurunen. Surface chemistry of atomic layer deposition: A case study for the trimethylaluminum/water process. J. Appl. Phys. 97 (2005)121301.
DOI: 10.1063/1.1940727
Google Scholar
[30]
G.N. Parsons, S.M. George, M. Knez. Progress and future directions for atomic layer deposition and ALD-based chemistry. Mrs Bull. 36 (2011) 865–871.
DOI: 10.1557/mrs.2011.238
Google Scholar
[31]
L. Wu, R. Bai, M. Qu, M. Tian, Y. Shen, Y. Wang and X. Cheng. Comparison of thermal and plasma enhanced atomic layer deposition HfO2 thin films. Semicond. Mater. 44 (2019) 795-802.
Google Scholar
[32]
H.G. Kim, J.G. Lee, S.S. Kim. Self-assembled monolayers as a defect sealant of Al2O3, barrier layers grown by atomic layer deposition. Org. Electron. 52 (2018) 98-102.
DOI: 10.1016/j.orgel.2017.10.004
Google Scholar
[33]
J.H. Jang, N. Kim, X. Li, T. Kyu, J. Kim and S.H. Kim. Advanced thin gas barriers film incorporating alternating structure of PEALD-based Al2O3/organic-inorganic nanohybrid layers. Appl. Surf. Sci. 475 (2019) 926-933.
DOI: 10.1016/j.apsusc.2018.12.296
Google Scholar
[34]
J. Meyer, D. Schneidenbach, T. Winkler, S. Hamwi, T. Weimann, P. Hinze, S. Ammermann, H.H. Johannes, T. Riedl and W. Kowalsky. Reliable thin film encapsulation for organic light emitting diodes by low-temperature atomic layer deposition. Appl. Phys. Lett. 94 (2009) 233305.
DOI: 10.1063/1.3153123
Google Scholar
[35]
A.P. Ghosh, L.J. Gerenser, C.M. Jarman and J.E. Fornalik. Thin-film encapsulation of organic light-emitting devices. Appl. Phys. Lett. 86 (2005) 223503.
DOI: 10.1063/1.1929867
Google Scholar
[36]
K.L. Jarvis, P.J. Evans. Growth of thin barrier films on flexible polymer substrates by atomic layer deposition. Thin Solid Films. 624 (2017) 111-135.
DOI: 10.1016/j.tsf.2016.12.055
Google Scholar
[37]
V.H. Martínez-Landeros, B.E. Gnade, M.A. Quevedo-López and R. Ramirez-Bon. Permeation studies on transparent multiple hybrid SiO2-PMMA coatings-Al2O3barriers on PEN substrates. J Sol-Gel Sci Technol. 59 (2011) 345-351.
DOI: 10.1007/s10971-011-2509-5
Google Scholar
[38]
S.W. Seo, E. Jung, H. Chae, S.J. Seo, H.K. Chung and S.M. Cho. Bending properties of organic–inorganic multilayer moisture barriers. Thin Solid Films. 550 (2014) 742-746.
DOI: 10.1016/j.tsf.2013.11.072
Google Scholar
[39]
L. Guan, J. Xu. Research on composite barrier layers of paper substrate for flexible display. J. Fudan Univ. Nat. Sci. 58 (2019) 733-739.
Google Scholar
[40]
B.J. Kim, D. Han, S. Yoo and S.G. Im. Organic/inorganic multilayer thin film encapsulation via initiated chemical vapor deposition and atomic layer deposition for its application to organic solar cells. Korean J. Chem. Eng. 34 (2017) 892-897.
DOI: 10.1007/s11814-016-0303-3
Google Scholar
[41]
J.H. Shin, W. Kim, G.M. Choi, T.S. Kim and B.S. Bae. Optimization of multilayer inorganic/organic thin film structure for foldable barrier films// SID Symp. Dig. Tech. Pap. (2017) 1757-60.
DOI: 10.1002/sdtp.12016
Google Scholar