[1]
J. C. Chang, C. Choi, J. C. Kim, Y. H. J. J. o. M. E. Yun, Development of microstructure and mechanical properties of a Ni-base single-crystal superalloy by hot-isostatic pressing, Journal of Materials Engineering and Performance. 12 (2003) 420-425.
DOI: 10.1361/105994903770342953
Google Scholar
[2]
H. Zhou, Y. Ro, H. Harada, Y. Aoki, M. J. M. e. Arai, and E. A, Deformation microstructures after low-cycle fatigue in a fourth-generation Ni-base SC superalloy TMS-138," Materials Science and Engineering: A. 381 (2004) 20-27.
DOI: 10.1016/j.msea.2004.04.051
Google Scholar
[3]
V. Brien, B. Décampsb, Low cycle fatigue of a nickel based superalloy at high temperature: deformation microstructures, Materials Science and Engineering: A. 316, no. 1-2, (2001) 18-31.
DOI: 10.1016/s0921-5093(01)01235-7
Google Scholar
[4]
J. Yu, Guoming Han, Zhao kuangChu, Xiaofeng Sun, TaoJin Zhuang, qi Hu., High temperature thermo-mechanical and low cycle fatigue behaviors of DD32 single crystal superalloy, Materials Science and Engineering: A. 592 (2014) 164-172.
DOI: 10.1016/j.msea.2013.10.055
Google Scholar
[5]
R. L. Amaro, S. D. Antolovich, R. W. Neu, P. Fernandez-Zelaia, and W. J. I. J. o. F. Hardin, Thermomechanical fatigue and bithermal–thermomechanical fatigue of a nickel-base single crystal superalloy, International Journal of Fatigue. 42, (2012). 165-171.
DOI: 10.1016/j.ijfatigue.2011.08.017
Google Scholar
[6]
H. U. Hong, J. G. Kang, B. G. Choi, I. S. Kim, Y. S. Yoo, and C. Y. Jo, A comparative study on thermomechanical and low cycle fatigue failures of a single crystal nickel-based superalloy, International Journal of Fatigue. 33, (2011). 1592-1599.
DOI: 10.1016/j.ijfatigue.2011.07.009
Google Scholar
[7]
T. Tinga, W.P.J. Visser and W.B. de Wolf, Integrated lifing analysis for gas turbine components, Proceedings of the ASME Turbo Expo 2000: Power for Land, Sea, and Air. 1 (2000).
DOI: 10.1115/2000-gt-0646
Google Scholar
[8]
T. Tinga, W. A. M. Brekelmans, M. G. D. J. M. S. Geers, and E. A, Time-incremental creep–fatigue damage rule for single crystal Ni-base superalloys, Materials Science & Engineering A. 508 (2009). 200-208.
DOI: 10.1016/j.msea.2008.12.047
Google Scholar
[9]
V. Caccuri, J. Cormier, and R. J. M. Desmorat, γ'-Rafting mechanisms under complex mechanical stress state in Ni-based single crystalline superalloys, Materials & Design. 131 (2017) 487-497.
DOI: 10.1016/j.matdes.2017.06.018
Google Scholar
[10]
Z. Shin,X. Wang, S. Liu, and J. Li, Low cycle fatigue properties and microstructure evolution at 760℃ of a single crystal superalloy, Progress in Natural Science: Materials International. 25 (2015) 78-83.
DOI: 10.1016/j.pnsc.2015.01.009
Google Scholar
[11]
L. Zhang, L. G. Zhao, A. Roy, V. V. Silberschmidt, G. J. M. E. Mccolvin, and E. A, Low-cycle fatigue of single crystal nickel-based superalloy – mechanical testing and TEM characterisation, Materials Science and Engineering: A. 744 (2019) 538-547.
DOI: 10.1016/j.msea.2018.12.084
Google Scholar
[12]
B. Zhang, R. Wang, D. Hu, K. Jiang, and F. J. I. J. o. F. Jing, Constitutive modelling of ratcheting behaviour for nickel-based single crystal superalloy under thermomechanical fatigue loading considering microstructure evolution, International Journal of Fatigue. 139 (2020) 105786.
DOI: 10.1016/j.ijfatigue.2020.105786
Google Scholar
[13]
D. L. Mikael Segersäll, Johan J. Moverare, Influence of crystal orientation on the thermomechanical fatigue behaviour in a single-crystal superalloy, Materials Science and Engineering: A. 623 (2015) 68-77.
DOI: 10.1016/j.msea.2014.11.026
Google Scholar
[14]
Rongqiao Wang, B. Zhang;D. Hu;K. Jiang;X. Hao;J. Mao;F. Jing, In-phase thermomechanical fatigue lifetime prediction of nickel-based single crystal superalloys from smooth specimens to notched specimens based on coupling damage on critical plane, International Journal of Fatigue. 126 (2019) 327-334.
DOI: 10.1016/j.ijfatigue.2019.05.016
Google Scholar
[15]
G. M. Han, J. J. Yu, X. F. Sun, Z. Q. Hu, Thermo-mechanical fatigue behavior of a single crystal nickel-based superalloy, Materials Science and Engineering: A. 528, (2011) 6217-6224.
DOI: 10.1016/j.msea.2011.04.083
Google Scholar
[16]
ZHANG Jian, ZHAO Yun-song, JIA Yu-liang, YANG Shuai, LUO Yu-shi, and TANG Ding-zhong, Thermo-mechanical Fatigue Behaviors of a Nickel-base Single Crystal Superalloy, Materials for Mechanical Engineering. 37 (2013) 41-44.
Google Scholar
[17]
D. W. Maclachlan, D. M. J. F. Knowles, F. o. E. Materials, and Structures, Fatigue behaviour and lifing of two single crystal superalloys, Fatigue & Fracture of Engineering Materials & Structures. 24 (2010) 503-521.
DOI: 10.1046/j.1460-2695.2001.00392.x
Google Scholar
[18]
Z. Y. Yu, X. Z. Wang, Z. F. Yue, X. M. J. M. S. Wang, and E. A, Investigation on microstructure evolution and fracture morphology of single crystal nickel-base superalloys under creep-fatigue interaction loading, Materials Science and Engineering: A. 697 (2017) 126-131.
DOI: 10.1016/j.msea.2017.05.018
Google Scholar
[19]
W. X. Yu Huichen, Materials Data Handbook for Aircraft Engine Design. Aviation Industry Press, Beijing, (2010).
Google Scholar
[20]
Committee of China Aviation Material Manual, China Aviation Material Manual. Standards Press of China, Beijing, (2002).
Google Scholar
[21]
F.-L. Jing, R.-Q. Wang, D.-Y. Hu, A thermo-mechanical fatigue life assessment method for single crystal turbine blades, Journal of Aerospace Power, 31 (2016) 299-306.
Google Scholar
[22]
Jinqian Zhao, Jiarong Li, Shizhong Liu. Creep cavitation and fracture in single crystal superalloy, Characterization of Minerals, Metals, and Materials, (2013) 311-317.
DOI: 10.1002/9781118659045.ch36
Google Scholar