Influence of Load Interaction between Creep and TMF on the Life of Single Crystal Nickel-based Superalloy

Article Preview

Abstract:

Experimental investigation on the influence of load interaction on the life of Single Crystal Nickel-based Superalloy is conducted. Three kinds of load spectrums considering single and coupled failure mode are designed. Life tests are carried out under creep, thermo-mechanical fatigue (TMF), and creep-TMF interaction loading. The test results show that test lives, under the creep-TMF interaction loading, are lower than the life predictions given by the linear damage accumulation (LDA) rule, indicating that the load coupling can accelerate the damage evolution process. The microstructure of fractured specimens shows that under the creep-TMF interaction loading, rafting cause more dislocations to accumulate in the at γ/γ′ phase boundary, which could be the evidence of life decrease.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volume 1027)

Pages:

99-106

Citation:

Online since:

April 2021

Authors:

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2021 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] J. C. Chang, C. Choi, J. C. Kim, Y. H. J. J. o. M. E. Yun, Development of microstructure and mechanical properties of a Ni-base single-crystal superalloy by hot-isostatic pressing, Journal of Materials Engineering and Performance. 12 (2003) 420-425.

DOI: 10.1361/105994903770342953

Google Scholar

[2] H. Zhou, Y. Ro, H. Harada, Y. Aoki, M. J. M. e. Arai, and E. A, Deformation microstructures after low-cycle fatigue in a fourth-generation Ni-base SC superalloy TMS-138," Materials Science and Engineering: A. 381 (2004) 20-27.

DOI: 10.1016/j.msea.2004.04.051

Google Scholar

[3] V. Brien, B. Décampsb, Low cycle fatigue of a nickel based superalloy at high temperature: deformation microstructures, Materials Science and Engineering: A. 316, no. 1-2, (2001) 18-31.

DOI: 10.1016/s0921-5093(01)01235-7

Google Scholar

[4] J. Yu, Guoming Han, Zhao kuangChu, Xiaofeng Sun, TaoJin Zhuang, qi Hu., High temperature thermo-mechanical and low cycle fatigue behaviors of DD32 single crystal superalloy, Materials Science and Engineering: A. 592 (2014) 164-172.

DOI: 10.1016/j.msea.2013.10.055

Google Scholar

[5] R. L. Amaro, S. D. Antolovich, R. W. Neu, P. Fernandez-Zelaia, and W. J. I. J. o. F. Hardin, Thermomechanical fatigue and bithermal–thermomechanical fatigue of a nickel-base single crystal superalloy, International Journal of Fatigue. 42, (2012). 165-171.

DOI: 10.1016/j.ijfatigue.2011.08.017

Google Scholar

[6] H. U. Hong, J. G. Kang, B. G. Choi, I. S. Kim, Y. S. Yoo, and C. Y. Jo, A comparative study on thermomechanical and low cycle fatigue failures of a single crystal nickel-based superalloy, International Journal of Fatigue. 33, (2011). 1592-1599.

DOI: 10.1016/j.ijfatigue.2011.07.009

Google Scholar

[7] T. Tinga, W.P.J. Visser and W.B. de Wolf, Integrated lifing analysis for gas turbine components, Proceedings of the ASME Turbo Expo 2000: Power for Land, Sea, and Air. 1 (2000).

DOI: 10.1115/2000-gt-0646

Google Scholar

[8] T. Tinga, W. A. M. Brekelmans, M. G. D. J. M. S. Geers, and E. A, Time-incremental creep–fatigue damage rule for single crystal Ni-base superalloys, Materials Science & Engineering A. 508 (2009). 200-208.

DOI: 10.1016/j.msea.2008.12.047

Google Scholar

[9] V. Caccuri, J. Cormier, and R. J. M. Desmorat, γ'-Rafting mechanisms under complex mechanical stress state in Ni-based single crystalline superalloys, Materials & Design. 131 (2017) 487-497.

DOI: 10.1016/j.matdes.2017.06.018

Google Scholar

[10] Z. Shin,X. Wang, S. Liu, and J. Li, Low cycle fatigue properties and microstructure evolution at 760℃ of a single crystal superalloy, Progress in Natural Science: Materials International. 25 (2015) 78-83.

DOI: 10.1016/j.pnsc.2015.01.009

Google Scholar

[11] L. Zhang, L. G. Zhao, A. Roy, V. V. Silberschmidt, G. J. M. E. Mccolvin, and E. A, Low-cycle fatigue of single crystal nickel-based superalloy – mechanical testing and TEM characterisation, Materials Science and Engineering: A. 744 (2019) 538-547.

DOI: 10.1016/j.msea.2018.12.084

Google Scholar

[12] B. Zhang, R. Wang, D. Hu, K. Jiang, and F. J. I. J. o. F. Jing, Constitutive modelling of ratcheting behaviour for nickel-based single crystal superalloy under thermomechanical fatigue loading considering microstructure evolution, International Journal of Fatigue. 139 (2020) 105786.

DOI: 10.1016/j.ijfatigue.2020.105786

Google Scholar

[13] D. L. Mikael Segersäll, Johan J. Moverare, Influence of crystal orientation on the thermomechanical fatigue behaviour in a single-crystal superalloy, Materials Science and Engineering: A. 623 (2015) 68-77.

DOI: 10.1016/j.msea.2014.11.026

Google Scholar

[14] Rongqiao Wang, B. Zhang;D. Hu;K. Jiang;X. Hao;J. Mao;F. Jing, In-phase thermomechanical fatigue lifetime prediction of nickel-based single crystal superalloys from smooth specimens to notched specimens based on coupling damage on critical plane, International Journal of Fatigue. 126 (2019) 327-334.

DOI: 10.1016/j.ijfatigue.2019.05.016

Google Scholar

[15] G. M. Han, J. J. Yu, X. F. Sun, Z. Q. Hu, Thermo-mechanical fatigue behavior of a single crystal nickel-based superalloy, Materials Science and Engineering: A. 528, (2011) 6217-6224.

DOI: 10.1016/j.msea.2011.04.083

Google Scholar

[16] ZHANG Jian, ZHAO Yun-song, JIA Yu-liang, YANG Shuai, LUO Yu-shi, and TANG Ding-zhong, Thermo-mechanical Fatigue Behaviors of a Nickel-base Single Crystal Superalloy, Materials for Mechanical Engineering. 37 (2013) 41-44.

Google Scholar

[17] D. W. Maclachlan, D. M. J. F. Knowles, F. o. E. Materials, and Structures, Fatigue behaviour and lifing of two single crystal superalloys, Fatigue & Fracture of Engineering Materials & Structures. 24 (2010) 503-521.

DOI: 10.1046/j.1460-2695.2001.00392.x

Google Scholar

[18] Z. Y. Yu, X. Z. Wang, Z. F. Yue, X. M. J. M. S. Wang, and E. A, Investigation on microstructure evolution and fracture morphology of single crystal nickel-base superalloys under creep-fatigue interaction loading, Materials Science and Engineering: A. 697 (2017) 126-131.

DOI: 10.1016/j.msea.2017.05.018

Google Scholar

[19] W. X. Yu Huichen, Materials Data Handbook for Aircraft Engine Design. Aviation Industry Press, Beijing, (2010).

Google Scholar

[20] Committee of China Aviation Material Manual, China Aviation Material Manual. Standards Press of China, Beijing, (2002).

Google Scholar

[21] F.-L. Jing, R.-Q. Wang, D.-Y. Hu, A thermo-mechanical fatigue life assessment method for single crystal turbine blades, Journal of Aerospace Power, 31 (2016) 299-306.

Google Scholar

[22] Jinqian Zhao, Jiarong Li, Shizhong Liu. Creep cavitation and fracture in single crystal superalloy, Characterization of Minerals, Metals, and Materials, (2013) 311-317.

DOI: 10.1002/9781118659045.ch36

Google Scholar