[1]
D. M. Rowe, CRC handbook of thermoelectrics, 1st ed. CRC Press, New York, (1995).
Google Scholar
[2]
W. Xie et al., Identifying the Specific Nanostructures Responsible for the High Thermoelectric Performance of (Bi,Sb)2Te3 Nanocomposites, Nano Lett. vol. 10 (2010) 3283–3289.
DOI: 10.1021/nl100804a
Google Scholar
[3]
G. J. Snyder and E. S. Toberer, Complex thermoelectric materials, Nat. Mater. vol. 7 (2008) 105–114.
Google Scholar
[4]
B. Poudel et al., High-Thermoelectric Performance of Nanostructured Bismuth Antimony Telluride Bulk Alloys, Science (8). vol. 320 (2008) 634–638.
DOI: 10.1126/science.1156446
Google Scholar
[5]
T.-Q. Lu, P.-F. Nan, S.-L. Song, X.-Y. Zhu, H.-Z. Zhao, and Y. Deng, Enhanced thermoelectric performance through homogenously dispersed MnTe nanoparticles in p-type Bi0.52Sb1.48Te3 nanocomposites, Chinese Phys. B. vol. 27 (2018) 47207.
DOI: 10.1088/1674-1056/27/4/047207
Google Scholar
[6]
D. Byeon et al., Discovery of colossal Seebeck effect in metallic Cu2Se, Nat. Commun. vol. 10 (2019) 1–7.
Google Scholar
[7]
Q. Jin et al., Flexible layer-structured Bi2Te3 thermoelectric on a carbon nanotube scaffold, Nat. Mater. vol. 18 (2019) 62–68.
Google Scholar
[8]
K. Agarwal, V. Kaushik, D. Varandani, A. Dhar, and B. R. Mehta, Nanoscale thermoelectric properties of Bi2Te3 – Graphene nanocomposites: Conducting atomic force, scanning thermal and kelvin probe microscopy studies, J. Alloys Compd. vol. 681 (2016) 394–401.
DOI: 10.1016/j.jallcom.2016.04.161
Google Scholar
[9]
Q. Jiang, J. Yang, J. Xin, Z. Zhou, D. Zhang, and H. Yan, Carriers concentration tailoring and phonon scattering from n-type zinc oxide (ZnO) nanoinclusion in p- and n-type bismuth telluride (Bi2Te3): Leading to ultra-low thermal conductivity and excellent thermoelectric properties,, J. Alloys Compd. vol. 694 (2017) 864–868.
DOI: 10.1016/j.jallcom.2016.10.076
Google Scholar
[10]
J. Divya, A. Pramothkumar, S. Joshua Gnanamuthu, D. C. Bernice Victoria, and P. C. Jobe prabakar, Structural, optical, electrical, and magnetic properties of Cu and Ni doped SnO2 nanoparticles prepared via Co-precipitation approach, Phys. B Condens. Matter. vol. 588 (2020) 412169.
DOI: 10.1016/j.physb.2020.412169
Google Scholar
[11]
B. H. Toby and R. B. Von Dreele, GSAS-II: the genesis of a modern open-source all-purpose crystallography software package, J. Appl. Crystallogr. vol. 46 (2013) 544–549.
DOI: 10.1107/s0021889813003531
Google Scholar
[12]
L. Cheng et al., Effects of van der Waals interactions and quasiparticle corrections on the electronic and transport properties of Bi2Te3, Phys. Rev. B. vol. 90 (2014) 85118.
Google Scholar
[13]
K. Ahmad, C. Wan, M. A. Al-Eshaikh, and A. N. Kadachi, Enhanced thermoelectric performance of Bi2Te3 based graphene nanocomposites, Appl. Surf. Sci. vol. 474 (2019) 2–8.
DOI: 10.1016/j.apsusc.2018.10.163
Google Scholar
[14]
D. Bao et al., Texture-dependent thermoelectric properties of nano-structured Bi2Te3, Chem. Eng. J. vol. 388 (2020) 124295.
Google Scholar
[15]
H. J. Trodahl, Thermopower of the superconducting cuprates, Phys. Rev. B. vol. 51 (1995) 6175–6178.
DOI: 10.1103/physrevb.51.6175
Google Scholar
[16]
X. Wang, Y. Li, G. Liu, and F. Shan, Achieving high power factor of p-type BiSbTe thermoelectric materials via adjusting hot-pressing temperature, Intermetallics. 93 (2017) 338–342.
DOI: 10.1016/j.intermet.2017.10.015
Google Scholar
[17]
Z. M. Gibbs, H.-S. Kim, H. Wang, and G. J. Snyder, Band gap estimation from temperature dependent Seebeck measurement—Deviations from the 2e|Smax.Tmax| relation, Appl. Phys. Lett. vol. 106 (2015) 22112.
DOI: 10.1063/1.4905922
Google Scholar
[18]
Y. C. Dou, X. Y. Qin, D. Li, L. L. Li, T. H. Zou, and Q. Q. Wang, Enhanced thermopower and thermoelectric performance through energy filtering of carriers in (Bi2Te3)0.2(Sb2Te3)0.8 bulk alloy embedded with amorphous SiO2 nanoparticles, J. Appl. Phys. vol. 114 (2013) 44906.
DOI: 10.1063/1.4817074
Google Scholar