[1]
A. González, E. Goikolea, J.A. Barrena, R. Mysyk, Review on supercapacitors: Technologies and materials, Renew. Sust. Energ. Rev., 58 (2016) 1189.
DOI: 10.1016/j.rser.2015.12.249
Google Scholar
[2]
D. U. Dzujah, R. Hidayat, Fitrilawati, Norman Syakir, Rolled Supercapacitor Device Model using Carbon-sheet as Electrodes in KCl Electrolyte System, Key Engineering Materials, 860 (2020) 53-58.
DOI: 10.4028/www.scientific.net/kem.860.53
Google Scholar
[3]
H. Wang, J. Lin, Z.X. Shen, Polyaniline (PANi) based electrode materials for energy storage and conversion, J. Sci. Adv. Mater. Devices, 1 (2016) 225.
Google Scholar
[4]
X. Hong, B. Zhang, E. Murphy, J. Zou, F. Kim, Three-dimensional reduced graphene oxide/polyaniline nanocomposite film prepared by diffusion driven layer-by-layer assembly for high-performance supercapacitors, Journal of Power Sources, 343 (2017) 60–66.
DOI: 10.1016/j.jpowsour.2017.01.034
Google Scholar
[5]
H. Li, C. Bubeck, Photoreduction Processes of Graphene Oxide and Related Applications, Macromol. Research, 21 (2013), 290-297.
DOI: 10.1007/s13233-013-1139-x
Google Scholar
[6]
S. Pei. and H. M. Cheng, Reduction of graphene oxide, Carbon 50 (2002) 3210–28.
Google Scholar
[7]
G. Eda and M. Chhowalla, Chemically derived graphene oxide: towards large area thin film electronics and optoelectronics, Adv. Mater. 22 (2010) 2392–2415.
DOI: 10.1002/adma.200903689
Google Scholar
[8]
X. Li, G. Zhang, X. Bai, X. Sun, X. Wang, E. Wang and H. Dai, Highly conducting graphene sheets and Langmuir–Blodgett films, Nat. Nanotechnol. 3 (2008) 538–542.
DOI: 10.1038/nnano.2008.210
Google Scholar
[9]
J. Mangadlao, C. Santos, M. J. Felipe, C. Leon, D. Rodrigues, G. Advincula, On the Antibacterial Mechanism of Graphene Oxide (GO) Langmuir-Blodgett Films Chem. Commun. 51 (2015) 2886–2889.
DOI: 10.1039/c4cc07836e
Google Scholar
[10]
S. Park and R.S. Ruoff, Chemical methods for the production of graphenes, Nature nanotechnology 4 (2009) 217-224.
Google Scholar
[11]
C. K. Chua and M. Pumera, Chemical reduction of graphene oxide. A synthetic chemistry viewpoint, Chem. Soc. Rev. 43 (2014) 291–312.
DOI: 10.1039/c3cs60303b
Google Scholar
[12]
R. K. Singh, R. Kumar, and D. P. Singh, Graphene oxide: strategies for synthesis, reduction and frontier applications, RSC Advances, 6 (2016) 69.
DOI: 10.1039/c6ra07626b
Google Scholar
[13]
S. Dubin, S. Gilje, K. Wang, V. C. Tung, K. Cha, A. S. Hall, J. Farrar, R. Varshneya, Y. Yang and R. B. Kaner, A one-step, solvothermal reduction method for producing reduced graphene oxide dispersions in organic solvents, ACS Nano 4 (2010) 3845–3852.
DOI: 10.1021/nn100511a
Google Scholar
[14]
M. A. Garakani, S. Bellani, V. Pellegrini, R. Oropesa-Nunez, A. E. D. R. Castillo, S. Abouali, L. Najafi, B. Martin-Garcia, A. Ansaldo, P. Bondavalli, C. Demirci, V. Romano, E. Mantero, L. Marasco, M. Prato, G. Bracciale, F. Bonaccorso, Scalable spray-coated graphene-based electrodes for high-power electrochemical double-layer capacitors operating over a wide range of temperature, Energy Storage Materials 34 (2020) 1-11.
DOI: 10.1016/j.ensm.2020.08.036
Google Scholar
[15]
T. Amelia, Fabrication Of Reduced Graphene Oxide (RGO) Thin Film on Cu Substrate With UV Oven Spraying Method and Its Application as Supercapacitor Cell Electrodes, Padjadjaran University, Sumedang, (2019).
Google Scholar
[16]
M. D. Stoller and R. S. Ruoff, Best practice methods for determining an electrode material's performance for ultracapacitors, Energy & Environmental Science 3(2010) 1294.
DOI: 10.1039/c0ee00074d
Google Scholar
[17]
F. Wan, J. Zhou, S. Huang, Z. Niu, High-Voltage Electrolytes for Aquoeous Energy Storage Device, Batteries & Supercaps 3 (2020) 323.
DOI: 10.1002/batt.201900229
Google Scholar
[18]
D. Krishnan, F. Kim, and J. Luo, Energetic graphene oxide: Challenges and opportunities, Nano Today 7 (2012) 167–152.
Google Scholar
[19]
Yang Z et. al .2017. Research progress on large-area perovskite thin films and solar modules. J Materiomics: 1–14364.
Google Scholar
[20]
Z. Chen, W. Ren, L. Gao, B. Liu, S. Pei, H.M. Cheng, Three-dimensional flexible and conductive interconnected graphene networks grown by chemical vapour deposition, Nat. Mater. 10 (2011) 424.
DOI: 10.1038/nmat3001
Google Scholar
[21]
R. Vellacheri, A. Al-Haddad, H. Zhao, W. Wang, C. Wang, Y. Lei, High performance supercapacitor for efficiency energy storage under extreme environmental temperatures, Nano Energy 8 (2014) 231–237.
DOI: 10.1016/j.nanoen.2014.06.015
Google Scholar