Influence of Au Sputtered in ZnO/Au/PANI Heterostructures Film for Photoelectrochemical Cells

Article Preview

Abstract:

A heterostructure system based on zinc oxide (ZnO), Gold (Au), and polyaniline polymer (PANI) nanoparticles has been developed to provide an efficient and effective photoelectrochemical energy conversion system. The ZnO/Au/PANI heterostructure system promotes Au as a mediator for electron transfer from the PANI conduction band to the ZnO valence band. A state of electrons being excited has resulted in the photons' charge transfer, which accumulated in ZnO and the holes concentrated in PANI. In this study, we investigated the effect of the deposition time of Au on ZnO/Au/PANI film on photoelectrochemical (PEC) performance. ZnO/Au/PANI films were prepared using spin-coating and DC-Sputtering methods for Au deposition. We found that the effect deposition time of Au in the ZnO/Au/PANI film heterostructural system shows good reduction-oxidation and photocatalytic activity due to the vibration of O-H bond groups in the film.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volume 1028)

Pages:

117-126

Citation:

Online since:

April 2021

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2021 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] M.M. Momeni, Y. Ghayeb, and F. Ezati, Journal of Colloid and Interface Science 514, 70 (2018).

Google Scholar

[2] C. Jiang, S.J. A. Moniz, A. Wang, T. Zhang, and J. Tang, Chem. Soc. Rev. 46, 4645 (2017).

Google Scholar

[3] Y. Ma, X. Wang, Y. Jia, X. Chen, H. Han, and C. Li, Chem. Rev. 114, 9987 (2014).

Google Scholar

[4] M. Ahmed and I. Dincer, International Journal of Hydrogen Energy 44, 2474 (2019).

Google Scholar

[5] Yudyanto, P.N. Aini, S. Sufian, M.T. H. Abadi, S. Maryam, R. Kurniawan, and N. Mufti, in AIP Conference Proceedings, Vol. 2228 (AIP Publishing LLC, 2020), p.020003.

DOI: 10.1063/5.0000879

Google Scholar

[6] R. Razali, A.K. Zak, W.H. Abd. Majid, and M. Darroudi, Ceramics International 37, 3657 (2011).

Google Scholar

[7] I. Boukhoubza, M. Khenfouch, M. Achehboune, B. M. Mothudi, I. Zorkani, and A. Jorio, Journal of Alloys and Compounds 797, 1320 (2019).

DOI: 10.1016/j.jallcom.2019.04.266

Google Scholar

[8] X. Zhang, Y. Liu, and Z. Kang, ACS Appl. Mater. Interfaces 6, 4480 (2014).

Google Scholar

[9] S. Linic, P. Christopher, and D. B. Ingram, Nature Mater 10, 911 (2011).

Google Scholar

[10] S. Mubeen, J. Lee, N. Singh, S. Krämer, G. D. Stucky, and M. Moskovits, Nature Nanotech 8, 247 (2013).

Google Scholar

[11] M. Rabia, M. Shaban, A. Adel, and A. A. Abdel‐Khaliek, Environ Prog Sustainable Energy 38, 13171 (2019).

DOI: 10.1002/ep.13171

Google Scholar

[12] N.P.S. Chauhan, in Fundamentals and Emerging Applications of Polyaniline (Elsevier, 2019), p.177–201.

Google Scholar

[13] A. Kushwaha and M. Aslam, RSC Adv. 4, 20955 (2014).

Google Scholar

[14] K. Sahu, K.H. Rahamn, and A. K. Kar, Mater. Res. Express 6, 095304 (2019).

Google Scholar

[15] J.-M. Li, H.-Y. Cheng, Y.-H. Chiu, and Y.-J. Hsu, Nanoscale 8, 15720 (2016).

Google Scholar

[16] V. Perumal, U. Hashim, S.C.B. Gopinath, R. Haarindraprasad, W.-W. Liu, P. Poopalan, S.R. Balakrishnan, V. Thivina, and A.R. Ruslinda, PLoS ONE 10, e0144964 (2015).

DOI: 10.1371/journal.pone.0144964

Google Scholar

[17] Mohd. Arif, Mohd. Shkir, S. AlFaify, A. Sanger, P. M. Vilarinho, and A. Singh, Optics & Laser Technology 112, 539 (2019).

DOI: 10.1016/j.optlastec.2018.11.006

Google Scholar

[18] J. Chen, Y. Xu, Y. Zheng, L. Dai, and H. Wu, Comptes Rendus Chimie 11, 84 (2008).

Google Scholar

[19] R. K. Sonker, S. R. Sabhajeet, S. Singh, and B. C. Yadav, Materials Letters 152, 189 (2015).

Google Scholar

[20] M. Diantoro, M. Z. Masrul, and A. Taufiq, J. Phys.: Conf. Ser. 1011, 012065 (2018).

Google Scholar

[21] M. Trchová, I. Šeděnková, E. Tobolková, and J. Stejskal, Polymer Degradation and Stability 86, 179 (2004).

DOI: 10.1016/j.polymdegradstab.2004.04.011

Google Scholar

[22] J. Chen, Y. Xu, Y. Zheng, L. Dai, and H. Wu, Comptes Rendus Chimie 11, 84 (2008).

Google Scholar

[23] A. Mostafaei and A. Zolriasatein, Progress in Natural Science: Materials International 22, 273 (2012).

Google Scholar

[24] T. Sen, S. Mishra, S. S. Sonawane, and N. G. Shimpi, Polym Eng Sci 58, 1438 (2018).

Google Scholar

[25] U. Bogdanović, V. V. Vodnik, S. P. Ahrenkiel, M. Stoiljković, G. Ćirić-Marjanović, and J. M. Nedeljković, Synthetic Metals 195, 122 (2014).

DOI: 10.1016/j.synthmet.2014.05.018

Google Scholar

[26] E. Asgari, A. Esrafili, A. J. Jafari, R. R. Kalantary, H. Nourmoradi, and M. Farzadkia, Process Safety and Environmental Protection 128, 65 (2019).

DOI: 10.1016/j.psep.2019.05.050

Google Scholar

[27] R. M. Pallares, X. Su, S. H. Lim, and N. T. K. Thanh, J. Mater. Chem. C 4, 53 (2016).

Google Scholar

[28] A. Zoshki, M. B. Rahmani, F. Masdarolomoor, and S. H. Pilehrood, Mod. Phys. Lett. B 33, 1950175 (2019).

DOI: 10.1142/s0217984919501756

Google Scholar

[29] S. Xiang, Q. Meng, K. Zhang, Y. Gu, W. Liu, and B. Yang, Chem. Res. Chin. Univ. 35, 924 (2019).

Google Scholar

[30] C. Berthomieu and R. Hienerwadel, Photosynth Res 101, 157 (2009).

Google Scholar

[31] H. Chen, Y.-M. Yeh, J.-Z. Chen, S.-M. Liu, B. Y. Huang, Z.-H. Wu, S.-L. Tsai, H.-W. Chang, Y.-C. Chu, and C. H. Liao, Thin Solid Films 549, 74 (2013).

Google Scholar

[32] D. A. Jency, R. Parimaladevi, G. V. Sathe, and M. Umadevi, Applied Surface Science 449, 638 (2018).

Google Scholar

[33] S. Bousalem, F. Z. Zeggai, H. Baltach, and A. Benyoucef, Chemical Physics Letters 741, 137095 (2020).

DOI: 10.1016/j.cplett.2020.137095

Google Scholar

[34] B. Yu, Y. Wen, X. Yang, and X. Cai, J Mater Sci: Mater Electron 30, 855 (2019).

Google Scholar

[35] S. Linic, P. Christopher, and D. B. Ingram, Nature Mater 10, 911 (2011).

Google Scholar

[36] M. Sawangphruk and T. Kaewsongpol, Materials Letters 87, 142 (2012).

Google Scholar