[1]
P. dos Santos, G. L. Zabot, M. A. A. Meireles, M. A. Mazutti, and J. Martínez, Synthesis of eugenyl acetate by enzymatic reactions in supercritical carbon dioxide,, Biochem. Eng. J., vol. 114, p.1–9, (2016).
DOI: 10.1016/j.bej.2016.06.018
Google Scholar
[2]
B. Tepe, E. Donmez, M. Unlu, F. Candan, and D. Daferera, Antimicrobial and antioxidative activities of the essential oils and methanol extracts of Salvia cryptantha ( Montbret et Aucher ex Benth .) and Salvia multicaulis ( Vahl ),, Food Chem., vol. 84, p.519–525, (2004).
DOI: 10.1016/s0308-8146(03)00267-x
Google Scholar
[3]
L. A. Lerin et al., Continuous ion-exchange resin catalysed esterification of eugenol for the optimized production of eugenyl acetate using a packed bed microreactor,, RSC Adv., vol. 5, no. 94, p.76898–76903, (2015).
DOI: 10.1039/c5ra08457a
Google Scholar
[4]
A. Kadarohman, Hernani, F. Khoerunisa, and R. M. Astuti, A Potential Study on Clove Oil , Eugenol and Eugenyl Acetate As Diesel Fuel Bio-Additives and Their Performance on One Cylinder Engine,, J. Transp., vol. 25, no. 1, p.66–76, (2010).
DOI: 10.3846/transport.2010.09
Google Scholar
[5]
A. Valério et al., Synthesis of eugenyl acetate through heterogeneous catalysis,, J. Essent. Oil Res., vol. 31, no. 4, p.312–318, (2019).
Google Scholar
[6]
D. A. Laroque et al., Synthesis of Eugenyl Acetate in Solvent-Free Acetylation : Process Optimization and Kinetic Evaluation Chemical Engineering & Process Technology Synthesis of Eugenyl Acetate in Solvent-Free Acetylation : Process Optimization and Kinetic Evaluation,, J. Chem. Eng. Process Technol., no. October, (2019).
DOI: 10.4172/2157-7048.1000247
Google Scholar
[7]
S. Mat Radzi, M. Z. R. Hanif, and K. M. W. Syamsul, Optimization of Eugenol Ester Using Statistical Approach of Response Surface Methodology,, Mater. Sci. Forum, vol. 857, p.469–474, (2016).
DOI: 10.4028/www.scientific.net/msf.857.469
Google Scholar
[8]
P. Gupta and S. Paul, Solid acids: Green alternatives for acid catalysis,, Catal. Today, vol. 236, no. PART B, p.153–170, (2014).
DOI: 10.1016/j.cattod.2014.04.010
Google Scholar
[9]
M. Pillinger, A. A. Valente, and A. S. Dias, Acidic cesium salts of 12-tungstophosphoric acid as catalysts for the dehydration of xylose into furfural,, vol. 341, p.2946–2953, (2006).
DOI: 10.1016/j.carres.2006.10.013
Google Scholar
[10]
C. R. Ward, D. French, J. Jankowski, M. Dubikova, Z. Li, and K. W. Riley, Element mobility from fresh and long-stored acidic fly ashes associated with an Australian power station,, Int. J. Coal Geol., vol. 80, no. 3–4, p.224–236, (2009).
DOI: 10.1016/j.coal.2009.09.001
Google Scholar
[11]
C. Ferreira et al., Y zeolite-supported niobium pentoxide catalysts for the glycerol acetylation reaction,, Microporous Mesoporous Mater., vol. 271, p.243–251, (2018).
DOI: 10.1016/j.micromeso.2018.06.010
Google Scholar
[12]
R. Purova et al., Journal of Molecular Catalysis A : Chemical Pillared HMCM-36 zeolite catalyst for biodiesel production by esterification of palmitic acid," ,Journal Mol. Catal. A, Chem., vol. 406, p.159–167, (2015).
DOI: 10.1016/j.molcata.2015.06.006
Google Scholar
[13]
E. Indarti, Hydrated calcined Cyrtopleura costata seashells as an effective solid catalyst for microwave-assisted preparation of palm oil biodiesel,, ENERGY Convers. Manag., vol. 117, p.319–325, (2016).
DOI: 10.1016/j.enconman.2016.03.030
Google Scholar
[14]
I. Korkut and M. Bayramoglu, Ultrasound assisted biodiesel production in presence of dolomite catalyst,, Fuel, vol. 180, p.624–629, (2016).
DOI: 10.1016/j.fuel.2016.04.101
Google Scholar
[15]
S. Zhao et al., Experimental investigation on biodiesel production through transesterification promoted by the La-dolomite catalyst,, Fuel, vol. 257, p.116092, (2019).
DOI: 10.1016/j.fuel.2019.116092
Google Scholar
[16]
M.S. Kotwal, P.S. Niphadkar, S.S. Deshpande, V.V. Bokade, and P.N. Joshi, Transesterification of sunflower oil catalyzed by flyash-based solid catalysts,, Fuel, vol. 88, no. 9, p.1773–1778, (2009).
DOI: 10.1016/j.fuel.2009.04.004
Google Scholar
[17]
M. C. Manique, L. V. Lacerda, A. K. Alves, and C. P. Bergmann, Biodiesel production using coal fly ash-derived sodalite as a heterogeneous catalyst,, Fuel, vol. 190, p.268–273, (2017).
DOI: 10.1016/j.fuel.2016.11.016
Google Scholar
[18]
N. A. Mazumder, R. Rano, and G. Sarmah, A green and efficient solid acid catalyst from coal fly ash for Fischer esterification reaction,, J. Ind. Eng. Chem., vol. 32, p.211–217, (2015).
DOI: 10.1016/j.jiec.2015.08.020
Google Scholar
[19]
A. Sharma, S. Kabra, S. Katara, and A. Rani, Acid activated fly ash , as a novel solid acid catalyst for esterification of aetic acid,, Indian J. Appl. Res., vol. 3, no. 4, p.37–39, (2013).
DOI: 10.15373/2249555x/apr2013/12
Google Scholar
[20]
R. D. Rieke, D. S. Thakur, B. D. Roberts, and G. T. White, to Fatty Alcohol Part I : Correlation Between Catalyst Properties and Activity / Selectivity,, vol. 74, no. 4, p.333–339, (1997).
DOI: 10.1007/s11746-997-0088-y
Google Scholar
[21]
A. Altomare, N. Corriero, C. Cuocci, A. Falcicchio, and R. Rizzi, QUALX2 . 0 : A qualitative phase analysis software using the freely available database POW-COD QUALX2 . 0 : a qualitative phase analysis software using the freely available database POW _ COD,, J. Appl. Crystallogr., vol. 48, no. April, p.598–603, (2015).
DOI: 10.1107/s1600576715002319
Google Scholar
[22]
O. Babajide, L. Petrik, N. Musyoka, B. Amigun, and F. Ameer, Use of Coal Fly Ash As a Catalyst in the Production of Biodiesel,, Pet. Coal, vol. 52, no. 4, p.261–272, (2010).
DOI: 10.1016/j.cattod.2012.04.044
Google Scholar
[23]
D. A. Laroque, R. A. L. Maria JA Silva, and G. N. Pereira, Synthesis of Eugenyl Acetate in Solvent-Free Acetylation: Process Optimization and Kinetic Evaluation,, J. Chem. Eng. Process Technol., vol. 06, no. 04, p.4–11, (2015).
DOI: 10.4172/2157-7048.1000247
Google Scholar
[24]
M. J. A. Silva et al., Lipozyme TL IM as Catalyst for the Synthesis of Eugenyl Acetate in Solvent-Free Acetylation,, Appl. Biochem. Biotechnol., vol. 176, no. 3, p.782–795, (2015).
DOI: 10.1007/s12010-015-1611-5
Google Scholar