[1]
Mordike, B.L.; Ebert, T. Magnesium: Properties-applications-potential. Mater. Sci. Eng. A 2001, 302, 37–45.
Google Scholar
[2]
Mohamed, W.; Gollapudi, S.; Charit, I.; Murty, K.L. Formability of a wrought Mg alloy evaluated by impression testing. Mater. Sci. Eng. A 2018, 712, 140–145.
DOI: 10.1016/j.msea.2017.11.088
Google Scholar
[3]
Guo, W.; Wang, Q.D.; Ye, B.; Zhou, H. Enhanced microstructure homogeneity and mechanical properties of AZ31–Si composite by cyclic closed-die forging. J. Alloys Compd. 2013, 558, 164–171.
DOI: 10.1016/j.jallcom.2012.11.067
Google Scholar
[4]
Stanford, N. Micro-alloying Mg with Y, Ce, Gd and La for texture modification -a comparative study. Mater. Sci. Eng. A 2010, 527, 2669–2677.
DOI: 10.1016/j.msea.2009.12.036
Google Scholar
[5]
Bohlen, J.; Nürnberg, M.R.; Senn, J.W.; Letzig, D.; Agnew, S.R. The texture and anisotropy of Mg-zinc-rare earth alloy sheets. Acta. Mater. 2007, 55, 2101–2112.
DOI: 10.1016/j.actamat.2006.11.013
Google Scholar
[6]
Nie, J.F.; Zhu, Y.M.; Morton, A.J. On the structure, transformation and deformation of long-period stacking ordered phases in Mg-Y-Zn alloys. Metall. Mater. Trans. A 2014, 45, 3338–3348.
DOI: 10.1007/s11661-014-2301-6
Google Scholar
[7]
Zhang, D.X.; Tan, Z.; Huo, Q.H.; Xiao, Z.Y.; Fang, Z.W.; Yang, X.Y. Dynamic recrystallization behaviors of Mg-Gd-Y-Zn-Zr alloy with different morphologies and distributions of LPSO phases. Mater. Sci. Eng. A 2018, 715, 389–403.
DOI: 10.1016/j.msea.2017.12.103
Google Scholar
[8]
Li Y , Wang J , Liu X , et al. Accelerated and enhanced aging hardening response of the pre-aged and HPT-processed Mg-Zn-Y alloy by HAADF-STEM[J]. Materials Letters, 261.
DOI: 10.1016/j.matlet.2019.127096
Google Scholar
[9]
Ma X , Prameela S E , Yi P , et al. Dynamic Precipitation and Recrystallization in Mg-9wt.%Al During Equal-Channel Angular Extrusion: A Comparative Study to Conventional Aging[J]. Acta Materialia, (2019).
DOI: 10.1016/j.actamat.2019.04.046
Google Scholar
[10]
Ebrahimi S H S, Dehghani K, Aghazadeh J, et al. Investigation on microstructure and mechanical properties of Al/Al-Zn-Mg–Cu laminated composite fabricated by accumulative roll bonding (ARB) process[J]. Materials Science and Engineering A, 2018, 718(MAR.7):311-320.
DOI: 10.1016/j.msea.2018.01.130
Google Scholar
[11]
Nugmanov D R, Knezevic M, Zecevic M, et al. Origin of plastic anisotropy in (ultra)-fine-grained Mg-Zn-Zr alloy processed by isothermal multi-step forging and rolling: Experiments and modeling[J]. Materials Science and Engineering A, 2018: 81-93.
DOI: 10.1016/j.msea.2017.12.045
Google Scholar
[12]
Pardis N, Talebanpour B, Ebrahimi R, et al. Cyclic expansion-extrusion (CEE): A modified counterpart of cyclic extrusion-compression (CEC)[J]. Materials Science and Engineering A, 2011, 528(25-26):7537-7540.
DOI: 10.1016/j.msea.2011.06.059
Google Scholar
[13]
Dong, B.B.; Zhang, Z.M.; Yu, J.M.; Che, X.; Meng, M.; Zhang, J.L. Microstructure, texture evolution and mechanical properties of multi-directional forged Mg-13Gd-4Y–2Zn-0.5Zr alloy under decreasing temperature. J. Alloys Compd. 2020, 823, 153776.
DOI: 10.1016/j.jallcom.2020.153776
Google Scholar
[14]
Beibei Dong, Xin Che, Zhimin Zhang, Jianmin Yu, & Mu Meng. (2020). Microstructure evolution and microhardness of Mg-13Gd-4Y–2Zn-0.5Zr alloy via pre-solution and multi-directional forging (mdf) process. Journal of Alloys and Compounds, 853.
DOI: 10.1016/j.jallcom.2020.157066
Google Scholar
[15]
Du, Y.; Zhang, Z.M.; Zhang, G.S.; Yan, Z.M.; Yu, J.M. Grain Refinement and Texture Evolution of Mg-Gd-Y-Zn-Zr Alloy Processed by Repetitive Usetting-extrusion at Decreasing Temperature. Rare Met. Mater. Eng. 2018, 47, 1422–1428.
DOI: 10.1016/s1875-5372(18)30144-9
Google Scholar
[16]
Meng, Y.Z.; Yu, J.M.; Liu, K.; Yu, H.S.; Zhang, F.; Wu, Y.J.; Zhang, Z.M.; Luo, N.N.; Wang, H.H. The evolution of long-period stacking ordered phase and its effect on dynamic recrystallization in Mg-Gd-Y-Zn-Zr alloy processed by repetitive upsetting-extrusion. J. Alloy. Compd. 2020, 828, 154454.
DOI: 10.1016/j.jallcom.2020.154454
Google Scholar