Dendritic Growth of Rapid-Solidified Eutectic High-Entropy Alloy

Article Preview

Abstract:

Mould casting and drop-tube techniques were used to solidify a AlCoCrFeNi2.1 eutectic high-entropy alloy under conditions of high cooling rate. The samples obtained from two different methods present the same phase constituent, FCC and B2 phases. During mould casting experiments the alloy almost solidified into the eutectic structure consisting of lamellar and anomalous morphology, with a tiny fraction of cellular and dendrite morphology being observed at certain sites of the sample surface due to the corresponding high cooling rate. Instead, during drop-tube experiments a typical, coarse dendrite structure of FCC single phase was formed across the entire 106-150 μm particle. The cellular structure can also be formed directly from the melt. The rest region solidified into the general eutectic morphology as was observed in the casting rods. The results clearly indicate the transition from coupled eutectic growth to single-phase dendrite growth with increasing departures from equilibrium for the multi-component AlCoCrFeNi2.1 eutectic high-entropy alloy.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volume 1035)

Pages:

46-50

Citation:

Online since:

June 2021

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2021 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] E. Cadirli, D.M. Herlach, T. Volkmann, Characterization of rapidly solidified Ni–Si and Co–Al eutectic alloys in drop tube. J. Non-Cryst. Solids, 356 (2010) 461-466.

DOI: 10.1016/j.jnoncrysol.2009.12.019

Google Scholar

[2] W.J. Yao, X.J. Han, B. Wei, Microstructural evolution during containerless rapid solidification of Ni-Mo eutectic alloys. J. Alloys Compd. 348 (2003) 88-99.

DOI: 10.1016/s0925-8388(02)00803-4

Google Scholar

[3] C.R. Clopet, R.F. Cochrane, A.M. Mullis, The origin of anomalous eutectic structures in undercooled Ag-Cu alloy. Acta Mater. 61 (2013) 6894-6902.

DOI: 10.1016/j.actamat.2013.08.001

Google Scholar

[4] Y. Yu, A.M. Mullis, R.F. Cochrane, Rapidly solidified Ag-Cu eutectics: A comparative study using drop-tube and melt fluxing techniques. IOP Conf. Series: Mater. Sci. Eng. 117 (2016) 012053.

DOI: 10.1088/1757-899x/117/1/012053

Google Scholar

[5] C.M. Lin, H. Tsai, Evolution of microstructure, hardness, and corrosion properties of high-entropy Al0.5CoCrFeNi alloy. Intermetallics, 19 (2011) 288-294.

DOI: 10.1016/j.intermet.2010.10.008

Google Scholar

[6] J.Y. He, H. Wang, H.L. Huang, X.D. Xu, M.W. Chen, Y. Wu, X.J. Liu, T.G. Nieh, K. An, Z.P. Lu, A precipitation-hardened high-entropy alloy with outstanding tensile properties. Acta Mater, 102 (2016) 187-196.

DOI: 10.1016/j.actamat.2015.08.076

Google Scholar

[7] B. Gorr, M. Azim, H.J. Christ, T. Mueller, D. Schliephake, M. Heilmaier, Phase equilibria, microstructure, and high temperature oxidation resistance of novel refractory high entropy alloys. J. Alloys Compd. 624 (2015) 270-278.

DOI: 10.1016/j.jallcom.2014.11.012

Google Scholar

[8] Y.P. Lu, H.F. Huang, X.Z. Gao, C.L. Ren, J. Gao, H.Z. Zhang, S.J. Zheng, Q.Q. Jin, Y.H. Zhao, C.Y. Lu, T.M. Wang, T.J. Li, A promising new class of irradiation tolerant materials: Ti2ZrHfV0.5Mo0.2 high-entropy alloy. J. Mater. Sci. Technol. 35 (2019) 369-373.

DOI: 10.1016/j.jmst.2018.09.034

Google Scholar

[9] J.Y. He, W.H. Liu, H. Wang, Y. Wu, X.J. Liu, T.G. Nieh, Z.P. Lu, Effects of Al addition on structural evolution and tensile properties of the FeCoNiCrMn high-entropy alloy system. Acta Mater. 62 (2014) 105-113.

DOI: 10.1016/j.actamat.2013.09.037

Google Scholar

[10] C. Chen, K. Wong, R.P. Krishnan, J.P. Embs, S.M. Chathoth, A slow atomic diffusion process in high-entropy glass-forming metallic melts. J. Phys. D Appl. Phys. 51 (2018) 145301.

DOI: 10.1088/1361-6463/aab148

Google Scholar

[11] Y. Lu, X. Gao, L. Jiang, Z. Chen, T. Wang, J. Jie, H. Kang, Y. Zhang, S. Guo, H. Ruan, Y. Zhao, Z. Cao, T. Li, Directly cast bulk eutectic and near-eutectic high entropy alloys with balanced strength and ductility in a wide temperature range. Acta Mater. 124 (2017) 143-150.

DOI: 10.1016/j.actamat.2016.11.016

Google Scholar

[12] Y. Lu, Y. Dong, S. Guo, L. Jiang, H. Kang, T. Wang, B. Wen, Z. Wang, J. Jie, Z. Cao, H. Ruan, T. Li, A Promising new class of high-temperature alloys: Eutectic high-Entropy alloys. Sci. Rep. 4 (2014) 6200.

DOI: 10.1038/srep06200

Google Scholar

[13] L. Cao, X. Wang, Y. Wang, L. Zhang, Y. Yang, F. Liu, Y. Cui, Microstructural evolution, phase formation and mechanical properties of multi-component AlCoCrFeNix alloys. App. Phys. A, 125 (2019) 699.

DOI: 10.1007/s00339-019-2959-0

Google Scholar

[14] L. Cao, L. Zhu, H. Shi, Z. Wang, Y. Yang, Y. Meng, L. Zhang, Y. Cui, Microstructural evolution from dendrites to core-shell equiaxed grain morphology for CoCrFeNiVx high-entropy alloys in metallic casting mould. Metals, 9 (2019) 1172.

DOI: 10.3390/met9111172

Google Scholar

[15] L. Cao, R. F. Cochrane, A.M. Mullis, Solidification morphology and phase selection in drop-tube processed Ni-Fe-Si intermetallics. Intermetallics, 60 (2015) 33-44.

DOI: 10.1016/j.intermet.2015.01.006

Google Scholar

[16] T. Kozieł, Estimation of cooling rates in suction casting and copper-mould casting processes. Arch. Metall. Mater. 60 (2015) 767-771.

DOI: 10.1515/amm-2015-0204

Google Scholar

[17] L. Cao, R.F. Cochrane, A.M. Mullis, Microstructure evolution and phase formation in rapidly solidified Ni-25.3 at. pct Si alloy. Metall. Mater. Trans. A,. 46 (2015) 2015-4705.

DOI: 10.1007/s11661-015-3070-6

Google Scholar