Morphology of Dispersoids in an Annealed Al-Mg Alloys

Article Preview

Abstract:

Morphology of dispersoids in an annealed Al-Mg alloy were investigated using TEM. Five kinds of dispersoids with different structures and morphologies were observed in an annealed Al-Mg alloy. The 1st, or spherical-like one is monoclinic structured θ-Al45(Mn,Cr)7 phase with twin and orientation domain. The 2nd or plate-shaped one is η-Al5(Mn,Cr) phase with monoclinic or pesuo-tetragonal structure. The 3rd or prismatic-like one is a new hexagonal structured Al6.4Mn phase with a unit cell of a=1.72nm, c=1.27nm, and γ=120°, and the 4th or big rod-shaped one is orthorhombic structured Al6(Mn,Fe) phase which is often reported. The 5th one is E-Al18Mg3(Mn–Cr)2 phase with twin or triple twin observed occasionally in Al-Mg annealed alloy. The first two of dispersoids are in majority, followed by the middle two and a small number of the fifth. Formation mechanisms of these particles in Al-Mg alloy are discussed according to phase diagram and possible formation of the twins in the particles are described based on minimum energy.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volume 1035)

Pages:

72-82

Citation:

Online since:

June 2021

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2021 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] H. J. McQueen, Hot working and forming processes, J.Met. 32 (1980) 17-26.

Google Scholar

[2] F. Humphreys, The nucleation of recrystallization at second phase particles in deformed aluminium, Acta Metall. 25 (1977) 1323-1344.

DOI: 10.1016/0001-6160(77)90109-2

Google Scholar

[3] S-L. Lee, S-T. Wu, Identification of second phase in Al-Mg alloys containing Mn, Metall Trans. A. 18 (1987) 1353-1357.

Google Scholar

[4] T. Sheppard, M. Tutcher, Development of duplex deformation substructure during extrusion of a commercial Al-5Mg-0.8Mn alloy, Met Sci. 14 (1980) 579-590.

DOI: 10.1179/030634580790426184

Google Scholar

[5] G. Lucadamo, N. Yang, C. San Marchi, E. Lavernia, Microstructure characterization in cryomilled Al 5083, Mater. Sci. Eng. A 430 (2006) 230-241.

DOI: 10.1016/j.msea.2006.05.039

Google Scholar

[6] B. O. Kong, J. I. Suk, SW. Nam, Identification of Mn-dispersoid in Al-Zn-Mg-Mn alloy, J. Mater Sci Let. 15 (1996) 763-766.

DOI: 10.1007/bf00274597

Google Scholar

[7] T. Radetić, M. Popović, E.Romhanji, Microstructure evolution of a modified AA5083 aluminum alloy during a multistage homogenization treatment, Mater Char. 65 (2012) 16-27.

DOI: 10.1016/j.matchar.2011.12.006

Google Scholar

[8] R. Goswami, G. Spanos, P. Pao, R.Holtz, Precipitation behavior of the β phase in Al-5083. Mater. Sci. Eng. A 527 (2010) 1089-1095.

DOI: 10.1016/j.msea.2009.10.007

Google Scholar

[9] O. Engler, S.Miller-Jupp, Control of second-phase particles in the Al-Mg-Mn alloy AA 5083, J. Alloys Compd. 689 (2016) 998-1010.

DOI: 10.1016/j.jallcom.2016.08.070

Google Scholar

[10] Y. J. Li, W. Z. Zhang, K.Marthinsen, Precipitation crystrallography of plate-shaped Al6(Mn,Fe) second phase in AA5182 alloy, Acta Metall. 60 (2012) 5963-5974.

DOI: 10.1016/j.actamat.2012.06.022

Google Scholar

[11] Xiaoling Xiao, Hongwei Liu, Hao Zhan, et al, Morphology and microstructure of second-phases in 5083 aluminum alloy, J. chin. non-ferrous metal. 28 (2018) 2441-2449.

Google Scholar

[12] B. Grushko, W. Kowalski, D. Pavlyuchkov, et al, On the constitution of the Al-rich part of the Al-Cr-Mn system, J. Alloys Compd. 468 (2009) 87-95.

DOI: 10.1016/j.jallcom.2007.12.069

Google Scholar

[13] M. Audier, M. Durand-Charre, E. Laclau, H. Klein, Phase equilibria in the Al-Cr system, J. Alloys Compd. 220 (1995) 225-230.

DOI: 10.1016/0925-8388(94)06010-x

Google Scholar

[14] B. Grushko, B. Przepiórzyński, D. Pavlyuchkov, On the constitution of the high-Al region of the Al-Cr alloy system, J. Alloys Compd. 454 (2008) 214-220.

DOI: 10.1016/j.jallcom.2007.01.001

Google Scholar

[15] B. B. CAO, K. X.GUO, Crystallographic characterization of the monoclinic η-Al11Cr2, J.chin. Electr. Microsc. Soc. 26 (2007) 270-275.

Google Scholar

[16] M. Svoboda, J. Janovec, M. Jenko, et al, The characterisation of Intermetallic Compound Particles in an Annealed Al-Mg-Cr-Fe Alloy, Materiali in Tehnologije. 38 (2004) 289-294.

Google Scholar

[17] Xiaoling Xiao, Hongwei Liu, Wenlong Chen, et al, Twinning of θ-Al45(Mn,Cr)7 phase in 5083 aluminum alloy, J. chin. non-ferrous metal. 29 (2019) 684-692.

Google Scholar

[18] J. W. Edington, Practical Electron Microscopy in Materials Science, second ed., Van Nostrand Reinhold International, London, (1976).

Google Scholar

[19] L.K. Walford, The structure of the intermetallic phase FeAl6, Acta Cryst. 18 (1965) 287-291.

Google Scholar

[20] S. Balanetskyy, W. Kowalski, B.Grushko, Liquidus, solidus and reaction scheme of the Al-rich part of the Al-Cr-Mn, J. Alloys Compd. 474 (2009) 147-151.

DOI: 10.1016/j.jallcom.2008.06.126

Google Scholar

[21] V.Raghavan, Aluminum-Chromium- Manganese, J Phase Equilib Diffus. 30 (2009) 620-623.

DOI: 10.1007/s11669-009-9589-8

Google Scholar

[22] T. Schenk, M. Durand-Charre, M. Audier, Liquid-solid equilibria in the Al-rich corner of the Al-Mn-Cr system, J. Alloys Compd. 281 (1998) 249-263.

DOI: 10.1016/s0925-8388(98)00787-7

Google Scholar

[23] L. D.Marks, Surface structure and energetics of multiply twinned particles, Philos. Mag. A. 49 (1984) 81-93.

DOI: 10.1080/01418618408233431

Google Scholar

[24] C. V. Kopezky, A. V. Andreeva, Sukhomlin G D. Multiple twinning and specific properties of Σ = 3n boundaries in f.c.c. crystals, Acta Metall. Mater. 39 (1991) 1603-1615.

DOI: 10.1016/0956-7151(91)90248-y

Google Scholar

[25] Z.Chen , P. Chen, S. Li, 2012. Effect of Ce addition on microstructure of Al20Cu2Mn3 twin phase in an Al-Cu-Mn casting alloy, Mater. Sci. Eng. A 532 (2012) 606-609.

DOI: 10.1016/j.msea.2011.11.025

Google Scholar

[26] C.Z. Li , S.C. Wang, J. Yan, High resolution study of twin in A120Cu2Mn3 phase. Acta Metall. sinica. 28 (1992) 1-5.

Google Scholar