Microstructure and Texture Evolution of Repetitive Upsetting-Extruded (RUEed) Mg-Gd-Y-Zn-Zr Alloy after Hot Compression

Article Preview

Abstract:

In order to determine the deformation temperature of next pass, the hot compression tests were performed by Gleeble-3800 at different temperature form 380 to 420 °C. The microstructure and texture evolution of repetitive upsetting-extruded (RUEed) Mg-Gd-Y-Zn-Zr alloy during hot compression were studied by electron backscattering diffraction (EBSD) analysis. The results showed that the dynamic recrystallization (DRX) occured during the hot compression processing from the strain-stress flow curves. When the temperature increased to 420 °C, the average grain size reduced to 6.64 μm, and the volume fraction of DRXed grains increased to 81.5%. All the compressed alloys exhibited a typical compression texture, the maximum texture intensity of {0001} plane gradually decreased with increasing temperature. When the compression temperature was up to 420°C, the the maximum texture intensity of {0001} plane was 3.207 due to the effect of DRXed grains. Finally, 420°C is chosen as the next deformation of next pass because of the more precipitation and DRXed grains.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volume 1035)

Pages:

63-71

Citation:

Online since:

June 2021

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2021 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] V. Kannan, X.L. Ma, N.M. Krywopusk, L.J. Kecskes, T.P. Weihs, K.T. Ramesh, The effect of strain rate on the mechanisms of plastic flow and failure of an ECAE AZ31B magnesium alloy, J. Mater. Sci. 54, 13394-13419 (2019).

DOI: 10.1007/s10853-019-03838-5

Google Scholar

[2] Q. Chen, S.J. Luo, Z.D. Zhao, Microstructural evolution of previously deformed AZ91D magnesium alloy during partial remelting, J. Alloys. Compd. 477, 726-731 (2009).

DOI: 10.1016/j.jallcom.2008.10.106

Google Scholar

[3] A.A. Luo, Recent magnesium alloy development for elevated temperature applications, Int. Mater. Rev. 49, 13-30 (2004).

Google Scholar

[4] Q. Chen, Z.D. Zhao, C.K. Hu, D.Y. Shu, Microstructure development and thixoextrusion of magnesium alloy prepared by repetitive upsetting-extrusion, J. Alloys. Compd. 509, 7303-7315 (2011).

DOI: 10.1016/j.jallcom.2011.04.113

Google Scholar

[5] X.S. Xia, K. Zhang, X.G. Li, M.L. Ma, Y.J. Li, Microstructure and texture of coarse-grained Mg-Gd-Y-Nd-Zr alloy after hot compression, Mater. Des. 44, 521-527 (2013).

DOI: 10.1016/j.matdes.2012.08.043

Google Scholar

[6] Q. Chen, Z.D. Zhao, D.Y. Shu, Z.D. Zhao, Microstructure and mechanical properties of AZ91D magnesium alloy prepared by compound extrusion, Mater. Sci. Eng. A 528, 3930-3934 (2011).

DOI: 10.1016/j.msea.2011.01.028

Google Scholar

[7] B.L. Mordike, Creep-resistant magnesium alloys, Mater. Sci. Eng. A 324, 103-112 (2002).

Google Scholar

[8] L.L. Rokhlin, Rokhlin Magnesium Alloys Containing Rare Earth Metals: Structure and Properties, Taylor & Francis Ltd, London and New York, pp.1-2561 (2003).

DOI: 10.1201/9781482265163

Google Scholar

[9] T. Homma, N. Kunito, S. Kamado, Fabrication of extraordinary high-strength magnesium alloy by hot extrusion, Scripta Mater. 61, 644-647 (2009).

DOI: 10.1016/j.scriptamat.2009.06.003

Google Scholar

[10] M. Yamasaki, T. Anan, S. Yoshimoto, Y. Kawamura, Mechanical properties of warm-extruded Mg-Zn-Gd alloy with coherent 14H long periodic stacking ordered structure precipitate, Scripta Mater. 53, 799-803 (2005).

DOI: 10.1016/j.scriptamat.2005.06.006

Google Scholar

[11] S.M. He, X.Q. Zeng, L.M. Peng, X. Gao, J.F. Nie, W.J. Ding, Microstructe and strengthening mechanism of high strength Mg-10Gd-2Y-0.5Zr alloy, J. Alloys. Compd. 427, 316-323 (2007).

DOI: 10.1016/j.jallcom.2006.03.015

Google Scholar

[12] Z.J. Yu, Y. Huang, X. Qiu, Q. Yang, W. Sun, Z. Tian, D.P. Zhang, J. Meng, Fabrication of magnesium alloy with high strength and heat-resistance by hot extrusion and ageing, Mater. Sci. Eng. A 578, 346-353 (2013).

DOI: 10.1016/j.msea.2013.04.108

Google Scholar

[13] Z. Yu, Y. Huang, X. Qiu, G. Wang, F. Meng, N. Hort, J. Meng, Fabrication of a high strength Mg-11Gd-4.5Y-1Nd-1.5Zn-0.5Zr (wt%) alloy by thermomechanical treatments, Mater. Sci. Eng. A 622, 121-130 (2015).

DOI: 10.1016/j.msea.2014.10.077

Google Scholar

[14] Z.J. Yu, Y.D. Huang, C.L. Mendis, N. Hort, J. Meng, Microstructure evolution and mechanical properties of Mg-11Gd-4.5Y-1Nd-1.5Zn-0.5Zr alloy prepared via pre-ageing and hot extrusion, Mater. Sci. Eng. A 624, 23-31(2015).

DOI: 10.1016/j.msea.2014.11.061

Google Scholar

[15] K. Hagihara, A. Kinoshita, Y. Sugino, M. Yamasaki, Y. Kawamura, H.Y. Yasuda, Y. Umakoshi, Effect of long-period stacking ordered phase on mechanical properties of Mg97Zn1Y2 extruded alloy, Acta Mater. 58, 6282-6293 (2010).

DOI: 10.1016/j.actamat.2010.07.050

Google Scholar

[16] K. Hagihara, A. Kinoshita, Y. Fukusumi, M. Yamasaki, Y. Kawamura, High-temperature compressive deformation behavior of Mg97Zn1Y2 extruded alloy containing a long-period stacking ordered (LPSO) phase, Mater. Sci. Eng. A 560, 71-79 (2013).

DOI: 10.1016/j.msea.2012.09.016

Google Scholar

[17] K. Hagihara, A. Kinoshita, Y. Umakoshi, Plastic deformation behavior of Mg97Zn1Y2 with 18R long-period stacking ordered structure, Intermetallics 18, 267-276 (2010).

DOI: 10.1016/j.intermet.2009.07.014

Google Scholar

[18] B.B. Dong, Z.M. Zhang, J.M. Yu, X. Che, M. Meng, J.L. Zhang, Microstructure, texture evolution and mechanical properties of multi-directional forged Mg-13Gd-4Y-2Zn-0.5Zr alloy under decreasing temperature, J. Alloys. Compd. 823, 153776 (2020).

DOI: 10.1016/j.jallcom.2020.153776

Google Scholar

[19] T. Homma, N. Kunito, S. Kamado, Fabrication of extraordinary high-strength magnesium alloy by hot extrusion, Scripa Mater 61, 644-647 (2009).

DOI: 10.1016/j.scriptamat.2009.06.003

Google Scholar

[20] G.S. Zhang, Z.M. Zhang, X.B. Li, Z.M. Yan, X. Che, J.M. Yu, Y.Z. Meng, Effects of repetitive upsetting-extrusion parameters on microstructure and texture evolution of Mg-Gd-Y-Zn-Zr alloy, J. Alloys. Compd. 790, 48-57 (2019).

DOI: 10.1016/j.jallcom.2019.03.207

Google Scholar

[21] S.M. Ramezani, A. Zarei-Hanzaki, H.R. Abedi, A. Salandari-Rabori, P. Minarik, Achievement of fine-grained bimodal microstructures and superior mechanical properties in a multi-axially forged GWZ magnesium alloy containing LPSO structures, J. Alloys. Compd. 793, 134-145 (2019).

DOI: 10.1016/j.jallcom.2019.04.158

Google Scholar