[1]
Pierredabo, Andre'cy Y R. Electrocatalytic Dehydrochlorination of Pentachlorophenol to Phenol or Cyclohexanol. Environmental Science & Technology. 2000, 34:1264-1269.
Google Scholar
[2]
Peng He,Jianyu Zhu,Yaozong,et al. Pyrite-activated persulfate for simultaneous 2,4-DCP oxidation and Cr(VI) reduction[J]. Chemical Engineering Journal, 2021, 406.
DOI: 10.1016/j.cej.2020.126758
Google Scholar
[3]
Xu Yanchao, Zhang Jiping, Yuan Xinru, et al. Progress in Removal of Chlorophenol Compounds[J]. China Resources Comprehensive Utilization, 2019, 37(06): 107-109.
Google Scholar
[4]
Zhang Jian, Liu Huiling, Mohamed Thabi, et al. Preparation of Pd/GO/Ti Electrode and Its Electrochemical Degradation of 2, 4-dichlorophenol[J]. Environmental Protection Science, 2016, 42(03): 75-78.
Google Scholar
[5]
Muhamad M H, Abdullah S R S, Mohamad A B, et al. Application ofresponse surfacemethodology (RSM) for optimisation of COD, NH-N3and 2,4-DCP removal from recycled paper wastewater in a pilot-scalegranular activated carbon sequencing batch biofilm reactor (GAC-SBBR)[J]. J Environ Manage, 2013, 121: 179-190.
DOI: 10.1016/j.jenvman.2013.02.016
Google Scholar
[6]
Baumgarten E., Fiebes A. A new platinum catalyst based on poly (acrylamide-co-(3-(acryloylamino) propyltrimethylammonium chloride)) for the gas-phase reduction of nitrobenzene phenol and the hydrodechlorination of aromatic compounds. Reactive and Functional Polymers 1997, 33: 70-74.
DOI: 10.1016/s1381-5148(97)00019-9
Google Scholar
[7]
Cravotto G, Binello A, Di Carlo S, et al. Oxidative degradation ofchlorophenol derivatives promoted by microwaves or power ultrasound:a mechanism investigation[J]. Environmental Science and PollutionResearch, 2010, 17(03): 674-687.
DOI: 10.1007/s11356-009-0253-y
Google Scholar
[8]
Janssen LJJ, Koene L. The role of electrochemistry and electrochemical technology in environmental protection. Chemical Engineering Journal, 2002, 85(3): 137-144.
Google Scholar
[9]
Junjing Li, Huiling Liu, Xiuwen Cheng, et al. Preparation and characterization of palladium/polypyrrole/foam nickelelectrode for electrocatalytic hydrodechlorination[J]. Chemical Engineering Journal. 225 (2013): 489-498.
DOI: 10.1016/j.cej.2013.01.049
Google Scholar
[10]
Comninells C. Electrocatalysis in the electrochemical conversion conbustion of organic pollutants for waste water treatment. Electrochimica Acta, 1994, 39(12): 1857-1862.
DOI: 10.1016/0013-4686(94)85175-1
Google Scholar
[11]
Juttner K, Galla U, Schmieder H.Electrochemical approaches to environmental problems in the process industry. Electrochim Acta, 2000, 45(16): 2575-2594.
DOI: 10.1016/s0013-4686(00)00339-x
Google Scholar
[12]
Bufon C C, Heinzel T, Espindola P. Influence of the Polymerization Potential on the TransportProperties of Polypyrrole Films [J]. The Journal of Physical Chemistry B, 2010, 114(2): 715-718.
DOI: 10.1021/jp908565y
Google Scholar
[13]
Rusling J F. Controlling electrochemical catalysis with surfactant microstructures. Accounts of Chemical Research, 1991, 24(3): 75-81.
DOI: 10.1021/ar00003a003
Google Scholar
[14]
Souhail R Al-Abed, Fan Yuanxiang. Influence of pH and current on electrolytic dechlorination of trichloroethylene at a granular-graphite packed electrode. Chemosphere, 2006, 64(3): 462-469.
DOI: 10.1016/j.chemosphere.2005.11.005
Google Scholar
[15]
Yang Bo, Yu Gang, Liu Xitao. Electrochemical hydrodechlorination of palladium-loaded cathode materials. Electrochimica Acta, 2006, 52(3): 1075-1081.
DOI: 10.1016/j.electacta.2006.07.004
Google Scholar
[16]
Yang Bo, Yu Gang,Huang Jun. Electrocatalytic reductive dechlorination of 2,4,5-PCB in aqueous solution by Palladium-Modifid Titanium mesh as the cathode. Acta Physico-Chimica Sinica, 2006, 22(3):306~311.
DOI: 10.1016/s1872-1508(06)60006-5
Google Scholar
[17]
Cui Chunyue. Adsorrption and electrocatalytic dechlorination of Pentachlorophenol on palladium-loaded activated carbon fider. Separation and Purification Technology, 2005, 47(2):73~79.
DOI: 10.1016/j.seppur.2005.06.005
Google Scholar