[1]
Z. Liang, X. Ma, H. Lin, Y. Tang, The energy consumption and environmental impacts of SCR technology in China, Appl Energy. 88 (2011) 1120–1129.
DOI: 10.1016/j.apenergy.2010.10.010
Google Scholar
[2]
Z. Gong, Y.J. Shao, L. Pang, W.Q. Zhong, C. Chen, Study on the emission characteristics of nitrogen oxides with coal combustion in pressurized fluidized bed, Chin. J. Chem. Eng. 27 (2019) 1177–1183.
DOI: 10.1016/j.cjche.2018.07.020
Google Scholar
[3]
S.P. Cui, R.L. Hao, D. Fu, Integrated method of non-thermal plasma combined with catalytical oxidation for simultaneous removal of SO2 and NO, Fuel 246 (2019) 365–374.
DOI: 10.1016/j.fuel.2019.03.012
Google Scholar
[4]
S. Fu, Q. Song, Q. Yao, Study on the catalysis of CaCO3 in the SNCR deNOx process for cement kilns, Chem Eng. J. 262 (2015) 9–17.
DOI: 10.1016/j.cej.2014.09.048
Google Scholar
[5]
Sen. Li, Y.F Ge, X.L. Wei, Experiment on NOx reduction by advanced reburning in cement precalciner, J. Fuel 224 (2018) 235–240.
DOI: 10.1016/j.fuel.2018.03.039
Google Scholar
[6]
K. Zhang, Y. He, Z.H. Wang, T.H. Huang, Q. Li, S. Kumar, K. Cen, Multi-stage semi-coke activation for the removal of SO2 and NO, Fuel 210 (2017) 738–747.
DOI: 10.1016/j.fuel.2017.08.107
Google Scholar
[7]
C.H. Zheng, L.F. Xiao, R.Y. Qu, S.J. Liu, Q. Xin, P.D. Ji, H. Song, W.H. Wu, X. Gao, Numerical simulation of selective catalytic reduction of NO and SO2 oxidation in monolith catalyst, Chem. Eng. J. 361 (2019) 874–884.
DOI: 10.1016/j.cej.2018.12.150
Google Scholar
[8]
X.X. Cheng, Y.R. Cheng, Z.Q. Wang, C.Y. Ma, Comparative study of coal-based catalysts for NO adsorption and NO reduction by CO, Fuel 214 (2018) 230–241.
DOI: 10.1016/j.fuel.2017.11.009
Google Scholar
[9]
Y. Shu, H.C. Wang, J.W. Zhu, G. Tian, J.Y. Huang, F. Zhang, An experimental study of heterogeneous NO reduction by biomass reburning, Fuel Process. Technol. 132 (2015) 111–117.
DOI: 10.1016/j.fuproc.2014.12.039
Google Scholar
[10]
Y.F. Shen, X.L. Ge, M. Chen, Catalytic oxidation of nitric oxide (NO) with carbonaceous materials, RSC Adv. 6 (2016) 8469–8482.
DOI: 10.1039/c5ra24148k
Google Scholar
[11]
L. Chen, L. Liu, K. Geng, Y.J. Zhao, J.Q. Wu, R. Sun, S.Z. Sun, P.H. Qiu, Investigation of Heterogeneous NO Reduction by Biomass Char and Coal Char Blends in a Micro fluidized Bed Reaction Analyzer. Energy Fuels 34 (2020) 6317−6325.
DOI: 10.1021/acs.energyfuels.0c00080
Google Scholar
[12]
B. Wang, S. Sheng, L.S. Sun, S. Hu, H. Fei, T.F. Lu, J. Xiang, Investigation on Effect of CO on NO Heterogeneous Reduction With Char in O2/CO2 Atmosphere. J. Eng. Thermophys. 33 (2012) 336–338.
Google Scholar
[13]
M. Guerrero, A. Millera, M.U. Alzueta, R. Bilbao. Experimental and Kinetic Study at High Temperatures of the NO Reduction over Eucalyptus Char Produced at Different Heating Rates. Energy Fuels 25 (2011) 1024–33.
DOI: 10.1021/ef200036n
Google Scholar
[14]
L.Y. Wang, X.X Cheng, Z.Q. Wang, C.Y. Ma, Y.K. Qin, Investigation on Fe-Co binary metal oxides supported on activated semi-coke for NO reduction by CO, Appl. Catal. B-Environ. 201 (2017) 636–651.
DOI: 10.1016/j.apcatb.2016.08.021
Google Scholar
[15]
Y.H. Hu, R. Eli, The Catalytic Reaction of NO over Cu Supported on Meso-Carbon Microbeads of Ultrahigh Surface Area, J. Catal. 172 (1997) 110–117.
DOI: 10.1006/jcat.1997.1861
Google Scholar
[16]
L.D. Li, J.X. Chen, S.J. Zhang, F.X. Zhang, N.J. Zhang, T.Y. Wang, S.L. Liu, Selective Catalytic Reduction of Nitrogen Oxides from Exhaust of Lean Burn Engine over In-Situ Synthesized Cu−ZSM-5/Cordierite, Environ. Sci. Technol. 39 (2005) 2841–2847.
DOI: 10.1021/es049744t
Google Scholar
[17]
J.Y. Liu, L. Tan, L.L. Huang, Q. Wang, Y.C. Liu, Kinetic Monte Carlo Modeling for the NO−CO Reaction Mechanism on Rh(100) and Rh(111), Langmuir 36 (2020) 3127–3140.
DOI: 10.1021/acs.langmuir.9b03720
Google Scholar
[18]
B.R. Stanmore, V. Tschamber, J.F. Brilhac, Oxidation of carbon by NOx, with particular reference to NO2 and N2O, Fuel 87 (2008) 131–146.
DOI: 10.1016/j.fuel.2007.04.012
Google Scholar