Microstructure Evolution and Meta-Dynamic Recrystallization Behavior of Ti-45Al-8.5Nb-0.2W-0.2B-0.3Y Alloy during Inter-Pass Annealing after Deformation

Article Preview

Abstract:

The effect of processing parameters on meta-dynamic recrystallization (MDRX) and the microstructural characteristics evolution of TiAl alloy with high Nb containing during annealing period were studied through double-pass hot compression tests. The results indicated that the occurrence of MDRX had a strengthening effect to flow behavior of the present alloy, resulting in grain equalization. And the high temperature and large strain were beneficial for the occurrence of MDRX, resulting in the increase of recrystallization grains. For the present alloy, MDRX rate is low, hence, enough annealing time is needed for MDRX during inter-pass annealing. Besides, dislocation density is consumed with the occurrence of MDRX.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volume 1035)

Pages:

108-113

Citation:

Online since:

June 2021

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2021 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] S.W. Zeng, A.M. Zhao, H.T. Jiang, Y.S. Ren, Flow behavior and processing maps of Ti-44.5Al-3.8Nb-1.0Mo-0.3Si-0.1B alloy, J Alloy Compd. 698 (2017) 786-793.

DOI: 10.1016/j.jallcom.2016.12.214

Google Scholar

[2] Zhang WJ, Chen GL, Appel F, Nieh TG, Deevis SC. A preliminary study on the creep behavior of Ti–45Al–10Nb alloy. Mater Sci Eng A 2001;315:250–253.

DOI: 10.1016/s0921-5093(01)01150-9

Google Scholar

[3] Appel F, Oehring M, Wagner R. Novel design concepts for gamma-base titanium aluminide alloys. Intermetallics 2000;8:1283–1312.

DOI: 10.1016/s0966-9795(00)00036-4

Google Scholar

[4] Appel F, Brossmann U, Christoph U, Eggert S, Janschek P, Lorenz U, Müllauer J, Oehring M, Paul JDH. Recent progress in the development of gamma titanium aluminide alloys. Adv Eng Mater 2000;2:699–720.

DOI: 10.1002/1527-2648(200011)2:11<699::aid-adem699>3.0.co;2-j

Google Scholar

[5] H. Clemens, H. Kestler, Processing and applications of intermetallic γ-TiAlbased alloys, Adv. Eng. Mater. 2 (2000) 551-570.

DOI: 10.1002/1527-2648(200009)2:9<551::aid-adem551>3.0.co;2-u

Google Scholar

[6] E.A. Loria, Gamma titanium aluminides as prospective structural materials, Intermetallics. 8 (2000) 1339-1345.

DOI: 10.1016/s0966-9795(00)00073-x

Google Scholar

[7] S. Djanarthany, J.-C. Viala, J. Bouix. An overview of monolithic titanium aluminides based on Ti3Al and TiAl. Materials Chemistry and Physics 72 (2001) 301–319.

DOI: 10.1016/s0254-0584(01)00328-5

Google Scholar

[8] P. Janschek, Wrought TiAl blades, Materials Today: Proceedings. 2 (2015) 92-97.

Google Scholar

[9] L. Cheng, H. Chang, B. Tang, H.C. Kou, J.S. Li, Deformation and dynamic recrystallization behavior of a high Nb containing TiAl alloy, J Alloy Compd. 522 (2013) 363-369.

DOI: 10.1016/j.jallcom.2012.11.076

Google Scholar

[10] S.Z. Zhang, C.J. Zhang, Z.X. Du, Z.P. Hou, P. Lin, F.T. Kong, Y.Y. Chen, Deformation behavior of high Nb containing TiAl based alloy in α+γ two phase field region, Mater. Des. 90 (2016) 225-229.

DOI: 10.1016/j.matdes.2015.10.080

Google Scholar

[11] L. Xiang, B. Tang, X.Y. Xue, H.C. Kou, J.S. Li. Microstructural characteristics and dynamic recrystallization behavior of β-γ TiAl based alloy during high temperature deformation. Intermetallics. 97 (2018) 52-57.

DOI: 10.1016/j.intermet.2018.04.002

Google Scholar

[12] Appel, F.; Oehring, M.; Wagner, R. Novel design concepts for gamma-base titanium aluminide alloys. Intermetallics. 2000, 8, 1283-1312.

DOI: 10.1016/s0966-9795(00)00036-4

Google Scholar

[13] Appel, F.; Oehring, M.; Paul, J. Nano-scale design of TiAl alloys based on beta phase decomposition. Adv. Eng. Mater. 2006, 8, 371-376.

DOI: 10.1002/adem.200600013

Google Scholar

[14] H. Beladi, P. Cizek, P.D. Hodgson. The mechanism of metadynamic softening in austenite after complete dynamic recrystallization. Scripta Materialia 62 (2010) 191–194.

DOI: 10.1016/j.scriptamat.2009.10.022

Google Scholar

[15] Bin Tang, William Yi Wang, Lin Xiang, Yan Liu, Lei Zhu, Shengli Ji, Jian He, Jinshan Li. Metadynamic recrystallization behavior of β-solidified TiAl alloy during post-annealing after hot deformation. Intermetallics. 117 (2020) 106679.

DOI: 10.1016/j.intermet.2019.106679

Google Scholar

[16] Dingqian Dong, Fei Chen, Zhenshan Cui. Investigation on metadynamic recrystallization behavior in SA508-Ш steel during hot deformation. Journal of Manufacturing Processes 29 (2017) 18–28.

DOI: 10.1016/j.jmapro.2017.07.008

Google Scholar

[17] J. Liu, Y.G. Liu, H. Lin, M.Q. Li. The metadynamic recrystallization in the two-stage isothermal compression of 300M steel. Materials Science and Engineering A 565 (2013) 126–131.

DOI: 10.1016/j.msea.2012.11.116

Google Scholar

[18] Dao-Guang He, Y.C. Lin, Ming-Song Chen, Ling Li. Kinetics equations and microstructural evolution during metadynamic recrystallization in a nickel-based superalloy with d phase. Journal of Alloys and Compounds 690 (2017) 971-978.

DOI: 10.1016/j.jallcom.2016.08.096

Google Scholar

[19] Hossein Beladi, Pavel Cizek, Peter D. Hodgson. New insight into the mechanism of metadynamic softening in austenite. Acta Materialia 59 (2011) 1482–1492.

DOI: 10.1016/j.actamat.2010.11.012

Google Scholar

[20] M.H. Maghsoudi, A. Zarei-Hanzaki, P. Changizian, A. Marandi. Metadynamic recrystallization behavior of AZ61 magnesium alloy. Mater. Des. 57 (2014) 487-493.

DOI: 10.1016/j.matdes.2013.12.051

Google Scholar

[21] P. Vo, M. Jahazi, S. Yue. Recrystallization during thermomechanical processing of IMI834. Metall. Mater. Trans. A. 39a (2008) 2965-2980.

DOI: 10.1007/s11661-008-9666-3

Google Scholar