[1]
S.W. Zeng, A.M. Zhao, H.T. Jiang, Y.S. Ren, Flow behavior and processing maps of Ti-44.5Al-3.8Nb-1.0Mo-0.3Si-0.1B alloy, J Alloy Compd. 698 (2017) 786-793.
DOI: 10.1016/j.jallcom.2016.12.214
Google Scholar
[2]
Zhang WJ, Chen GL, Appel F, Nieh TG, Deevis SC. A preliminary study on the creep behavior of Ti–45Al–10Nb alloy. Mater Sci Eng A 2001;315:250–253.
DOI: 10.1016/s0921-5093(01)01150-9
Google Scholar
[3]
Appel F, Oehring M, Wagner R. Novel design concepts for gamma-base titanium aluminide alloys. Intermetallics 2000;8:1283–1312.
DOI: 10.1016/s0966-9795(00)00036-4
Google Scholar
[4]
Appel F, Brossmann U, Christoph U, Eggert S, Janschek P, Lorenz U, Müllauer J, Oehring M, Paul JDH. Recent progress in the development of gamma titanium aluminide alloys. Adv Eng Mater 2000;2:699–720.
DOI: 10.1002/1527-2648(200011)2:11<699::aid-adem699>3.0.co;2-j
Google Scholar
[5]
H. Clemens, H. Kestler, Processing and applications of intermetallic γ-TiAlbased alloys, Adv. Eng. Mater. 2 (2000) 551-570.
DOI: 10.1002/1527-2648(200009)2:9<551::aid-adem551>3.0.co;2-u
Google Scholar
[6]
E.A. Loria, Gamma titanium aluminides as prospective structural materials, Intermetallics. 8 (2000) 1339-1345.
DOI: 10.1016/s0966-9795(00)00073-x
Google Scholar
[7]
S. Djanarthany, J.-C. Viala, J. Bouix. An overview of monolithic titanium aluminides based on Ti3Al and TiAl. Materials Chemistry and Physics 72 (2001) 301–319.
DOI: 10.1016/s0254-0584(01)00328-5
Google Scholar
[8]
P. Janschek, Wrought TiAl blades, Materials Today: Proceedings. 2 (2015) 92-97.
Google Scholar
[9]
L. Cheng, H. Chang, B. Tang, H.C. Kou, J.S. Li, Deformation and dynamic recrystallization behavior of a high Nb containing TiAl alloy, J Alloy Compd. 522 (2013) 363-369.
DOI: 10.1016/j.jallcom.2012.11.076
Google Scholar
[10]
S.Z. Zhang, C.J. Zhang, Z.X. Du, Z.P. Hou, P. Lin, F.T. Kong, Y.Y. Chen, Deformation behavior of high Nb containing TiAl based alloy in α+γ two phase field region, Mater. Des. 90 (2016) 225-229.
DOI: 10.1016/j.matdes.2015.10.080
Google Scholar
[11]
L. Xiang, B. Tang, X.Y. Xue, H.C. Kou, J.S. Li. Microstructural characteristics and dynamic recrystallization behavior of β-γ TiAl based alloy during high temperature deformation. Intermetallics. 97 (2018) 52-57.
DOI: 10.1016/j.intermet.2018.04.002
Google Scholar
[12]
Appel, F.; Oehring, M.; Wagner, R. Novel design concepts for gamma-base titanium aluminide alloys. Intermetallics. 2000, 8, 1283-1312.
DOI: 10.1016/s0966-9795(00)00036-4
Google Scholar
[13]
Appel, F.; Oehring, M.; Paul, J. Nano-scale design of TiAl alloys based on beta phase decomposition. Adv. Eng. Mater. 2006, 8, 371-376.
DOI: 10.1002/adem.200600013
Google Scholar
[14]
H. Beladi, P. Cizek, P.D. Hodgson. The mechanism of metadynamic softening in austenite after complete dynamic recrystallization. Scripta Materialia 62 (2010) 191–194.
DOI: 10.1016/j.scriptamat.2009.10.022
Google Scholar
[15]
Bin Tang, William Yi Wang, Lin Xiang, Yan Liu, Lei Zhu, Shengli Ji, Jian He, Jinshan Li. Metadynamic recrystallization behavior of β-solidified TiAl alloy during post-annealing after hot deformation. Intermetallics. 117 (2020) 106679.
DOI: 10.1016/j.intermet.2019.106679
Google Scholar
[16]
Dingqian Dong, Fei Chen, Zhenshan Cui. Investigation on metadynamic recrystallization behavior in SA508-Ш steel during hot deformation. Journal of Manufacturing Processes 29 (2017) 18–28.
DOI: 10.1016/j.jmapro.2017.07.008
Google Scholar
[17]
J. Liu, Y.G. Liu, H. Lin, M.Q. Li. The metadynamic recrystallization in the two-stage isothermal compression of 300M steel. Materials Science and Engineering A 565 (2013) 126–131.
DOI: 10.1016/j.msea.2012.11.116
Google Scholar
[18]
Dao-Guang He, Y.C. Lin, Ming-Song Chen, Ling Li. Kinetics equations and microstructural evolution during metadynamic recrystallization in a nickel-based superalloy with d phase. Journal of Alloys and Compounds 690 (2017) 971-978.
DOI: 10.1016/j.jallcom.2016.08.096
Google Scholar
[19]
Hossein Beladi, Pavel Cizek, Peter D. Hodgson. New insight into the mechanism of metadynamic softening in austenite. Acta Materialia 59 (2011) 1482–1492.
DOI: 10.1016/j.actamat.2010.11.012
Google Scholar
[20]
M.H. Maghsoudi, A. Zarei-Hanzaki, P. Changizian, A. Marandi. Metadynamic recrystallization behavior of AZ61 magnesium alloy. Mater. Des. 57 (2014) 487-493.
DOI: 10.1016/j.matdes.2013.12.051
Google Scholar
[21]
P. Vo, M. Jahazi, S. Yue. Recrystallization during thermomechanical processing of IMI834. Metall. Mater. Trans. A. 39a (2008) 2965-2980.
DOI: 10.1007/s11661-008-9666-3
Google Scholar