[1]
H. Fang, K. Chen, Z. Zhang, et al. Effect of Yb additions on microstructures and properties of 7A60 aluminum alloy[J]. Transactions of Nonferrous Metals Society of China. 18 (2008) 28-32.
DOI: 10.1016/s1003-6326(08)60006-0
Google Scholar
[2]
E. Schwarzenböck, E. Ollivier, A. Garner, et al. Environmental cracking performance of new generation thick plate 7000-T7x series alloys in humid air[J]. Corrosion Science. 171 (2020) 108701.
DOI: 10.1016/j.corsci.2020.108701
Google Scholar
[3]
J. Burns, J. Boselli. Effect of plate thickness on the environmental fatigue crack growth behavior of AA7085-T7451[J]. International Journal of Fatigue. 83 (2016) 253-268.
DOI: 10.1016/j.ijfatigue.2015.10.020
Google Scholar
[4]
Y. Wang, L. Cao, X. Wu, et al. Effect of retrogression treatments on microstructure, hardness and corrosion behaviors of aluminum alloy 7085[J]. Journal of Alloys and Compounds. (814) 2020 152264.
DOI: 10.1016/j.jallcom.2019.152264
Google Scholar
[5]
C. Li, S. Wang, D. Zhang, et al. Effect of Zener-Hollomon parameter on quench sensitivity of 7085 aluminum alloy[J]. Journal of Alloys and Compounds. 688 (2016) 456-462.
DOI: 10.1016/j.jallcom.2016.07.089
Google Scholar
[6]
C. Li , K. He, F. Song, et al. Inhomogeneity of microstructure and properties of 7085-T651 aluminum alloy extra-thick plate[J]. Journal of Aeronautical Materials. (36) 2016 15-22.
Google Scholar
[7]
J. Robinson, R. Cudd, D. Tanner, et al. Quench sensitivity and tensile property inhomogeneity in 7010 forgings[J]. Journal of Materials Processing Technology. 119 (2001) 261-267.
DOI: 10.1016/s0924-0136(01)00927-x
Google Scholar
[8]
X. Zhang, N. Han, S. Liu , et al. Inhomogeneity of texture, tensile property and fracture toughness of 7050 aluminum alloy thick plate[J]. Chinese Journal of Nonferrous Metals. 20 (2010) 202-208.
Google Scholar
[9]
X. Ren, Y. Huang, Y. Liu, et al. Evolution of microstructure, texture, and mechanical properties in a twin-roll cast AA6016 sheet after asymmetric rolling with various velocity ratios between top and bottom rolls[J]. Materials Science and Engineering: A. (2020) 139448.
DOI: 10.1016/j.msea.2020.139448
Google Scholar
[10]
F. Shen, Z. Sun, W. Li , et al. Texture evolution in hot-rolled Al–Cu–Mg sheets using direction streamline approach and texture index[J]. Journal of Alloys and Compounds. (816) 2020 152415.
DOI: 10.1016/j.jallcom.2019.152415
Google Scholar
[11]
C. Sellars, Q. Zhu. Microstructural modelling of aluminium alloys during thermomechanical processing[J]. Materials Science & Engineering A. 280 (2000) 1-7.
DOI: 10.1016/s0921-5093(99)00648-6
Google Scholar
[12]
H. Ahmed, M. Wells, D. Maijer. Modelling of microstructure evolution during hot rolling of AA5083 using an internal state variable approach integrated into an FE model[J]. Materials Science & Engineering A Structural Materials. A390 (2005) 278-290.
DOI: 10.1016/j.msea.2004.08.045
Google Scholar
[13]
H. Ashtiani, H. Bisadi, M. Parsa. Inhomogeneity of temperature distribution through thickness of the aluminium strip during hot rolling[J]. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering ence. 225 (2011) 2938-2952.
DOI: 10.1177/0954406211408951
Google Scholar
[14]
X. Duan, T. Sheppard. Influence of forming parameters on static recrystallization behaviour during hot rolling aluminium alloy 5083[J]. Modelling & Simulation in Materials Science & Engineering. 10 (2002) 363-380.
DOI: 10.1088/0965-0393/10/4/301
Google Scholar
[15]
Y. Wang, M. Liu, W. Xiao, et al. Effects of multi-stage aging treatments on the precipitation behavior and properties of 7136 aluminum alloy[J]. Journal of Alloys and Compounds.814 ( 2020) 152256.
DOI: 10.1016/j.jallcom.2019.152256
Google Scholar
[16]
H. Huang, F. Jiang, X. Liu , et al. Effects of Al3(Sc, Zr) particles and shear bands on recrystallization and fracture behaviors of Al-Mg-Sc-Zr alloy[J]. Chinese Journal of Nonferrous Metals. 25 (2015) 1117-1127.
DOI: 10.1007/s11665-015-1748-y
Google Scholar
[17]
M. Starink, S. Wang . A model for the yield strength of overaged Al–Zn–Mg–Cu alloys[J]. Acta Materialia. 51 (2003) 5131-5150.
DOI: 10.1016/s1359-6454(03)00363-x
Google Scholar
[18]
H. She, D. Shu, J. Wang, B. Sun. Influence of multi-microstructural alterations on tensile property inhomogeneity of 7055 aluminum alloy medium thick plate[J]. Materials Characterization. 113 (2016) 189-197.
DOI: 10.1016/j.matchar.2016.01.020
Google Scholar
[19]
S. Choi, J. Brem , F. Barlat, et al. MACROSCOPIC ANISOTROPY IN AA50l9A SHEETS[J]. Acta Materialia. 48 (2000) 1853-1863.
DOI: 10.1016/s1359-6454(99)00470-x
Google Scholar
[20]
F. Roters, P. Eisenlohr, L. Hantcherli, et al. Overview of constitutive laws, kinematics, homogenization and multiscale methods in crystal plasticity finite-element modeling: Theory, experiments, applications[J]. Acta Materialia. 58 (2010) 1152-1211.
DOI: 10.1016/j.actamat.2009.10.058
Google Scholar
[21]
P. Bate, Y. An. Plastic anisotropy in AA5005 Al–1Mg: predictions using crystal plasticity finite element analysis[J]. Scripta materialia. 51 (2004) 973-977.
DOI: 10.1016/j.scriptamat.2004.07.018
Google Scholar
[22]
S. Choi, J. Brem, F. Barlat, et al. Macroscopic anisotropy in AA5019A sheets[J]. Acta materialia. 48 (2000) 1853-1863.
DOI: 10.1016/s1359-6454(99)00470-x
Google Scholar