Effect of Erbium on Microstructure, Hardness and Electrochemical Properties of Al-5Zn-0.03In Alloy

Article Preview

Abstract:

Al-5Zn-0.03In series alloys have been widely studied and used as sacrificial anode materials. Adding rare-earth (RE) element to Al-5Zn-0.03In sacrificial anode is the important way to improve its microstructure and properties. This paper focused on the effect of Er addition on the microstructure and properties of the Al-5Zn-0.03In-xEr alloy. Thermal analysis showed that the presence of Er in the series alloys reduced the solidification ranges and made their liquidus and solidus move to lower temperature. The microstructural analysis and hardness testing reveal that Er existed in the form of precipitation, refined the dendrites of the series alloys and improved the hardness of the series alloys. Investigation of the potentiodynamic polarization and the electrochemical impedance measurements were performed in 3.5 wt. % NaCl solution. The potentiodynamic polarization results indicated that the corrosion potential increased and the corrosion current density reduced with the increase of the Er addition. The Al-5Zn-0.03In alloy shows higher corrosion resistance with the increase of Er content. The EIS electrochemical impedance results showed that Al-5Zn-0.03In anode presented relatively uniform dissolution due to the refined microstructure by the addition of Er.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volume 1035)

Pages:

161-168

Citation:

Online since:

June 2021

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2021 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] H. Sun, L. Liu, Y. Li, L. Ma, Y. Yan, The performance of Al-Zn-In-Mg-Ti sacrificial anode in simulated deep water environment, Corros. Sci. 77 (2013) 77-87.

DOI: 10.1016/j.corsci.2013.07.029

Google Scholar

[2] J. Ma, J. Wen, Corrosion analysis of Al–Zn–In–Mg–Ti–Mn sacrificial anode alloy, J. Alloys Compd. 496 (2010) 110-115.

DOI: 10.1016/j.jallcom.2010.02.174

Google Scholar

[3] A.G. Munoz, S.B. Saidman, J.B. Bessone, Corrosion of an Al–Zn–In alloy in chloride media, Corros. Sci. 44 (2002) 2171-2182.

DOI: 10.1016/s0010-938x(02)00042-2

Google Scholar

[4] H. Sina, M. Emamy, M. Saremi, A. Keyvani, M. Mahta, J. Campbell, The influence of Ti and Zr on electrochemical properties of aluminum sacrificial anodes, Mater. Sci. Eng. A 431 (2006) 263-276.

DOI: 10.1016/j.msea.2006.06.011

Google Scholar

[5] A. Keyvani, M. Emamy, M. Saremi, H. Sina, M. Mahta, Influence of casting temperature on electrochemical behavior of Al-Zn-In sacrificial anodes, Iran. J. Chem. Chem. Eng. 24 (2005) 1-8.

Google Scholar

[6] M.A. Talavera, S. Valdez, J.A. Juarez-Islas, B. Mena, J. Genesca, EIS testing of new aluminium sacrificial anodes, J. Appl. Electrochem. 32 (2002) 897-903.

DOI: 10.1023/a:1020547508321

Google Scholar

[7] M.R. Saeri, A. Keyvani, Optimization of manganese and magnesium contents in as-cast aluminum-zinc-indium alloy as sacrificial anode, J. Mater. Sci. Technol. 27 (2011) 785-792.

DOI: 10.1016/s1005-0302(11)60143-6

Google Scholar

[8] J. Wen, J. He, X. Lu, Influence of silicon on the corrosion behaviour of Al-Zn-In-Mg-Ti sacrificial anode, Corros. Sci. 53 (2011) 3861-3865.

DOI: 10.1016/j.corsci.2011.07.039

Google Scholar

[9] W. Jiang, Z. Fan, Y. Dai, C. Li, Effects of rare earth elements addition on microstructures, tensile properties and fractography of A357 alloy, Mater. Sci. Eng. A 597 (2014) 237-244.

DOI: 10.1016/j.msea.2014.01.009

Google Scholar

[10] E.A.-D. la Torre, R. Pérez-Bustamante, J. Camarillo-Cisneros, C.D. Gómez-Esparza, H.M. Medrano-Prieto, R. Martínez-Sánchez, Mechanical properties of the A356 aluminum alloy modified with La/Ce, J. Rare Earths 31 (2013) 811-816.

DOI: 10.1016/s1002-0721(12)60363-9

Google Scholar

[11] J. Ma, J. Wen, W. Zhai, Q. Li, In situ corrosion analysis of Al-Zn-In-Mg-Ti-Ce sacrificial anode alloy, Mater. Charact. 65 (2012) 86-92.

DOI: 10.1016/j.matchar.2012.01.003

Google Scholar

[12] G.T. Qi, W. Xiong, W.T. Zhu, Effect of segregation on initiation of corrosion of aluminium sacrificial anode containing mischmetal, Corros. Eng. Sci. Technol. 46 (2011) 458-463.

DOI: 10.1179/147842209x12476568584377

Google Scholar

[13] G. Qi, H.X. Liao, J. Qu, Study on the electrochemical performances of segregation phases in aluminum anodes containing RE, J Chin. Soc. Corros. Prot. 23 (2003) 355-358. (in Chineses).

Google Scholar

[14] H. Li, Z. Gao, H. Yin, H. Jiang, X. Su, J. Bin, Effects of Er and Zr additions on precipitation and recrystallization of pure aluminum, Scr. Mater. 68 (2013) 59-62.

DOI: 10.1016/j.scriptamat.2012.09.026

Google Scholar

[15] P. Xing, B. Gao, Y. Zhuang, K. Liu, G. Tu, Effect of erbium on properties and microstructure of Al-Si eutectic alloy, J. Rare Earths 28 (2010) 927-930.

DOI: 10.1016/s1002-0721(09)60222-2

Google Scholar

[16] C. Booth-Morrison, D.C. Dunand, D.N. Seidman, Coarsening resistance at 400°C of precipitation-strengthened Al–Zr–Sc–Er alloys, Acta Mater. 59 (2011) 7029-7042.

DOI: 10.1016/j.actamat.2011.07.057

Google Scholar

[17] Y. Zhang, K. Gao, S. Wen, H. Huang, W. Wang, Z. Zhu, Z. Nie, D. Zhou, Determination of Er and Yb solvuses and trialuminide nucleation in Al–Er and Al–Yb alloys, J. Alloys Compd. 590 (2014) 526-534.

DOI: 10.1016/j.jallcom.2013.11.211

Google Scholar

[18] S.-p. Lin, Z.-r. Nie, H. Huang, C.-y. Zhan, Z.-b. Xing, W. Wang, Thermodynamic calculation of Er-X and Al-Er-X compounds existing in Al-Mg-Mn-Zr-Er alloy, Trans. Nonferrous Met. Soc. China 20 (2010) 682-687.

DOI: 10.1016/s1003-6326(09)60198-9

Google Scholar

[19] Shidan Zhu, Hui Huang, Zuoren Nie, Shengping Wen, Zhijun Zhang, Formation and evolution of Al3Er phrase in Al2Er alloy, Rare Metals 33 (2009) 164-169. (in Chineses).

Google Scholar

[20] J. He, J. Wen, X. Li, Effects of precipitates on the electrochemical performance of Al sacrificial anode, Corros. Sci. 53 (2011) 1948-1953.

DOI: 10.1016/j.corsci.2011.02.016

Google Scholar