[1]
Z.C. Lu, M.Q. Zeng, Y. Gao, et al. Improving wear performance of dual-scale Al–Sn alloys by adding nano-Si@Sn: Effects of Sn nanophase lubrication and nano-Si polishing [J]. Wear, 2015, 338-339: 258-267.
DOI: 10.1016/j.wear.2015.06.017
Google Scholar
[2]
Z.C. Lu, Y. Gao, M.Q. Zeng, et al. Improving wear performance of dual-scale Al–Sn alloys: The role of Mg addition in enhancing Sn distribution and tribolayer stability[J]. Wear, 2014, 309(1-2): 216-225.
DOI: 10.1016/j.wear.2013.11.018
Google Scholar
[3]
J.H. Bak, D.H. Cho, S. Shin, et al. Wear properties of hybrid ABO+BN+CNT/Al-Sn alloy matrix composites for engine bearing materials[J]. Metals and Materials International, 2018, 24(1): 205-215.
DOI: 10.1007/s12540-017-7236-1
Google Scholar
[4]
L. Balanović, D. Živković, D. Manasijević, et al. Calorimetric study and thermal analysis of Al–Sn system[J]. Journal of Thermal Analysis and Calorimetry, 2013, 111(2): 1431-1435.
DOI: 10.1007/s10973-012-2499-8
Google Scholar
[5]
M.C. Lucchetta, F. Saporiti, F. Audebert. Improvement of surface properties of an Al–Sn–Cu plain bearing alloy produced by rapid solidification[J]. Journal of Alloys and Compounds, 2019, 805: 709-717.
DOI: 10.1016/j.jallcom.2019.07.082
Google Scholar
[6]
F. Bertelli, E.S. Freitas, N. Cheung, et al. Microstructure, tensile properties and wear resistance correlations on directionally solidified Al-Sn-(Cu; Si) alloys[J]. Journal of Alloys and Compounds, 2017, 695: 3621-3631.
DOI: 10.1016/j.jallcom.2016.11.399
Google Scholar
[7]
C.J. Kong, P.D. Brown, S.J. Harris, et al. The microstructures of a thermally sprayed and heat treated Al–20 wt.%Sn–3 wt.%Si alloy[J]. Materials Science and Engineering: A, 2005, 403(1-2): 205-214.
DOI: 10.1016/j.msea.2005.04.051
Google Scholar
[8]
X. Liu, M.Q. Zeng, Y. Ma, et al. Wear behavior of Al–Sn alloys with different distribution of Sn dispersoids manipulated by mechanical alloying and sintering[J]. Wear, 2008, 265(11-12): 1857-1863.
DOI: 10.1016/j.wear.2008.04.050
Google Scholar
[9]
S. Zhang, Q. Pan, J. Yan, et al. Effects of sliding velocity and normal load on tribological behavior of aged Al-Sn-Cu alloy[J]. Transactions of Nonferrous Metals Society of China, 2016, 26(7): 1809-1819.
DOI: 10.1016/s1003-6326(16)64292-9
Google Scholar
[10]
Marrocco, L.C. Driver, S.J. Harris, et al. Microstructure and Properties of Thermally Sprayed Al-Sn-Based Alloys for Plain Bearing Applications[J]. Journal of Thermal Spray Technology, 2006, 15(4): 634-639.
DOI: 10.1361/105996306x147009
Google Scholar
[11]
K.S. Cruz, E.S. Meza, F.A.P. Fernandes, et al. Dendritic Arm Spacing Affecting Mechanical Properties and Wear Behavior of Al-Sn and Al-Si Alloys Directionally Solidified under Unsteady-State Conditions[J]. Metallurgical and materials transactions. A, Physical metallurgy and materials science, 2010, 41(4): 972-984.
DOI: 10.1007/s11661-009-0161-2
Google Scholar
[12]
L. Wei, B. Han, F. Ye, et al. Influencing mechanisms of heat treatments on microstructure and comprehensive properties of Al–Zn–Mg–Cu alloy formed by spray forming[J]. Journal of.
DOI: 10.1016/j.jmrt.2020.03.121
Google Scholar
[13]
L.L. Liu, Q.L. Pan, X.D. Wang, et al. The effects of aging treatments on mechanical property and corrosion behavior of spray formed 7055 aluminium alloy[J]. Journal of Alloys and Compounds, 2018, 735: 261-276.
DOI: 10.1016/j.jallcom.2017.11.070
Google Scholar
[14]
H.A. Godinho, A.L.R. Beletati, E.J. Giordano, et al. Microstructure and mechanical properties of a spray formed and extruded AA7050 recycled alloy[J]. Journal of Alloys and Compounds, 2014, 586: S139-S142.
DOI: 10.1016/j.jallcom.2012.12.122
Google Scholar
[15]
S. Mandal, V. Rakesh, P.V. Sivaprasad, et al. Constitutive equations to predict high temperature flow stress in a Ti-modified austenitic stainless steel[J]. Materials Science and Engineering: A, 2009, 500(1-2): 114-121.
DOI: 10.1016/j.msea.2008.09.019
Google Scholar
[16]
Q. Zang, H. Yu, Y. Lee, et al. Hot deformation behavior and microstructure evolution of annealed Al-7.9Zn-2.7Mg-2.0Cu (wt%) alloy[J]. Journal of alloys and compounds, 2018, 763: 25-33.
DOI: 10.1016/j.jallcom.2018.05.307
Google Scholar
[17]
R.L. Goetz, S.L. Semiatin. The adiabatic correction factor for deformation heating during the uniaxial compression test[J]. Journal of Materials Engineering and Performance, 2001, 10(6): 710-717.
DOI: 10.1361/105994901770344593
Google Scholar
[18]
S.F. Medina, C.A. Hernandez. General expression of the Zener-Hollomon parameter as a function of the chemical composition of low alloy and microalloyed steels[J]. Acta materialia, 1996, 44(1): 137-148.
DOI: 10.1016/1359-6454(95)00151-0
Google Scholar
[19]
C. Sun, J. Luan, G. Liu, et al. Predicted constitutive modeling of hot deformation for AZ31 magnesium alloy[J]. 2012, 48(7): 853-860.
DOI: 10.3724/sp.j.1037.2011.00641
Google Scholar
[20]
C.M. Sellars, W.J. Mctegart. On the mechanism of hot deformation[J]. Pergamon, 1966, 14(9).
Google Scholar
[21]
W. Yu, D.L. L., C.C. L.. A correlation between tensile flow stress and Zener-Hollomon factor in TiAl alloys at high temperatures[J]. Journal of Materials Science Letters, 2000, 19(13).
Google Scholar
[22]
M. El Mehtedi, F. Gabrielli, S. Spigarelli. Hot workability in process modeling of a bearing steel by using combined constitutive equations and dynamic material model[J]. Materials & Design, 2014, 53: 398-404.
DOI: 10.1016/j.matdes.2013.07.055
Google Scholar