[1]
L. Wang, and J. Liu, Liquid phase 3D printing for quickly manufacturing conductive metal objects with low melting point alloy ink. Science China Technological Sciences, 2014. 57(9): pp.1721-1728.
DOI: 10.1007/s11431-014-5583-4
Google Scholar
[2]
H. Y. LI, Y. Yang and J. Liu. Printable tiny thermocouple by liquid metal gallium and its matching metal. Applied Physics Letters, 2012, 101(7):073511.
DOI: 10.1063/1.4746397
Google Scholar
[3]
X.H. Yang, J. Liu, Liquid metal enabled combinatorial heat transfer science: toward unconventional extreme cooling, Front. Energy 12 (2018) 259–275.
DOI: 10.1007/s11708-017-0521-3
Google Scholar
[4]
Yang Xiao-Hu, Liu Jing. Liquid metal enabled combinatorial heat transfer science: towards unconventional extreme cooling. Frontiers in Energy, 2018, 12: 259-275.
DOI: 10.1007/s11708-017-0521-3
Google Scholar
[5]
C. Schade, Introduction to metal powder production and characterization, ASM Handbook, ASM International 2015, p.55–57.
Google Scholar
[6]
A. Lawley, Preparation of metal powders, Annu. Rev. Mater. Sci. 8 (1978) 49–71.
Google Scholar
[7]
D. Herzog, V. Seyda, E. Wycisk, C. Emmelmann, Additive manufacturing of metals, Acta Mater. 117 (2016) 371–392.
DOI: 10.1016/j.actamat.2016.07.019
Google Scholar
[8]
B. Avvaru, M.N. Patil, P.R. Gogate, A.B. Pandit, Ultrasonic atomization: effect of liquid phase properties, Ultrasonics 44 (2006) 146–158.
DOI: 10.1016/j.ultras.2005.09.003
Google Scholar
[9]
E. Lierke, G. Griesshammer, The formation of metal powders by ultrasonic atomization of molten metals, Ultrasonics 5 (1967) 224–228.
DOI: 10.1016/0041-624x(67)90066-2
Google Scholar
[10]
Wada Masahiro, Komoto Hiroaki, KonoToru. Method for producing metal powder and device:Japanese patent,6346115[P].1994-12-20.
Google Scholar
[11]
Yan, J., et al., Solution processable liquid metal nanodroplets by surface-initiated atom transfer radical polymerization. Nature Nanotechnology, 2019. 14(7): pp.684-690.
DOI: 10.1038/s41565-019-0454-6
Google Scholar
[12]
Li, X., et al., Evaporation-induced sintering of liquid metal droplets with biological nanofibrils for flexible conductivity and responsive actuation. Nature Communications, 2019.10(1).
DOI: 10.1038/s41467-019-11466-5
Google Scholar
[13]
Liu H.B., Ascencio, J.A., Perez-Alvarez,M.,et al.,2001.Melting behavior of nanometer sized gold isomers.Sur-face Science,491:88 -98.
DOI: 10.1016/s0039-6028(01)01351-6
Google Scholar
[14]
Lu,K., Jin Z.H.,2001.Melting and superheating of low-dimensional materials. Current Opinion in Solid State and Materials Science,5:39 -44.
DOI: 10.1016/s1359-0286(00)00027-9
Google Scholar
[15]
A.J. Yule, Y.Al. Suleiman, On droplet formation from capillary wave on a vibratingsurface, The Royal Society (2000) 1069–1085.
Google Scholar
[16]
R.J. Lang, Ultrasonic atomization of liquids, The Journal of the Acoustical Society ofAmerica 34 (1962) 6–8.
Google Scholar
[17]
Yaqun Yang, Jihui Wang and Qunying Li, Properties of Bi-Sn-In Pb-free fusible alloy, Function Materials,2007, 8:3259-3262.
Google Scholar
[18]
Yoon, S.W., et al., Investigation of the phase equilibria in the Sn-Bi-In alloy system. Metallurgical and Materials Transactions A, 1999. 30(6): pp.1503-1515.
DOI: 10.1007/s11661-999-0087-8
Google Scholar
[19]
Lee, C., et al., Effect of PVP on fabrication of Cu nanoparticles using an electrical wire explosion method. Journal of Materials Science: Materials in Electronics, 2019. 30(4): pp.4079-4084.
DOI: 10.1007/s10854-019-00696-4
Google Scholar
[20]
Shi, J., et al., Fabrication of BiInSn alloy powder via the combination of ultrasonic crushing with dispersants. Powder Technology, 2020. 373: pp.614-619.
DOI: 10.1016/j.powtec.2020.07.015
Google Scholar
[21]
Shi, J., et al., Effect of cryogenic rolling and annealing on the microstructure evolution and mechanical properties of 304 stainless steel. International Journal of Minerals, Metallurgy, and Materials, 2017. 24(6): pp.638-645.
DOI: 10.1007/s12613-017-1446-x
Google Scholar
[22]
Shi, J., et al., Cryogenic rolling-enhanced mechanical properties and microstructural evolution of 5052 Al-Mg alloy. Materials Science and Engineering: A, 2017. 701: pp.274-284.
DOI: 10.1016/j.msea.2017.06.087
Google Scholar
[23]
Lin, Y., et al., Ultra-fine grained structure in Al–Mg induced by discontinuous dynamic recrystallization under moderate straining. Materials Science and Engineering: A, 2013. 573: pp.197-204.
DOI: 10.1016/j.msea.2013.02.061
Google Scholar
[24]
Xuan Hui Qu. Principles and processes of powder metallurgy [M]. Beijing: metallurgical industry press, 2013:1-3.
Google Scholar